Extracting Dirichlet series coefficients












2












$begingroup$


Cauchy's integral formula is a powerful method to extract the $n$'th power series coefficient of an analytic function by evaluating a single complex integral. Is there any such analytic method to extract (ordinary) Dirichlet series coefficients? That is, assuming that a given function $f(s)$ admits a Dirichlet series expansion $$sum_n a_n n^{-s},$$ is there any known method to compute a desired coefficient $a_n$?










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Otherwise you can find the $a_n$ one by one from the asymptotic as $s to +infty$. I wonder if there is an analog of $c_n = frac{F^{(n)}(0)}{n!} = lim_{z to 0} frac{sum_{k=0}^n {k choose n} (-1)^{k-n} F(nz)}{z^n n!}$
    $endgroup$
    – reuns
    3 hours ago


















2












$begingroup$


Cauchy's integral formula is a powerful method to extract the $n$'th power series coefficient of an analytic function by evaluating a single complex integral. Is there any such analytic method to extract (ordinary) Dirichlet series coefficients? That is, assuming that a given function $f(s)$ admits a Dirichlet series expansion $$sum_n a_n n^{-s},$$ is there any known method to compute a desired coefficient $a_n$?










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Otherwise you can find the $a_n$ one by one from the asymptotic as $s to +infty$. I wonder if there is an analog of $c_n = frac{F^{(n)}(0)}{n!} = lim_{z to 0} frac{sum_{k=0}^n {k choose n} (-1)^{k-n} F(nz)}{z^n n!}$
    $endgroup$
    – reuns
    3 hours ago
















2












2








2


1



$begingroup$


Cauchy's integral formula is a powerful method to extract the $n$'th power series coefficient of an analytic function by evaluating a single complex integral. Is there any such analytic method to extract (ordinary) Dirichlet series coefficients? That is, assuming that a given function $f(s)$ admits a Dirichlet series expansion $$sum_n a_n n^{-s},$$ is there any known method to compute a desired coefficient $a_n$?










share|cite|improve this question









$endgroup$




Cauchy's integral formula is a powerful method to extract the $n$'th power series coefficient of an analytic function by evaluating a single complex integral. Is there any such analytic method to extract (ordinary) Dirichlet series coefficients? That is, assuming that a given function $f(s)$ admits a Dirichlet series expansion $$sum_n a_n n^{-s},$$ is there any known method to compute a desired coefficient $a_n$?







analytic-number-theory power-series dirichlet-series






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 4 hours ago









MCHMCH

30319




30319








  • 2




    $begingroup$
    Otherwise you can find the $a_n$ one by one from the asymptotic as $s to +infty$. I wonder if there is an analog of $c_n = frac{F^{(n)}(0)}{n!} = lim_{z to 0} frac{sum_{k=0}^n {k choose n} (-1)^{k-n} F(nz)}{z^n n!}$
    $endgroup$
    – reuns
    3 hours ago
















  • 2




    $begingroup$
    Otherwise you can find the $a_n$ one by one from the asymptotic as $s to +infty$. I wonder if there is an analog of $c_n = frac{F^{(n)}(0)}{n!} = lim_{z to 0} frac{sum_{k=0}^n {k choose n} (-1)^{k-n} F(nz)}{z^n n!}$
    $endgroup$
    – reuns
    3 hours ago










2




2




$begingroup$
Otherwise you can find the $a_n$ one by one from the asymptotic as $s to +infty$. I wonder if there is an analog of $c_n = frac{F^{(n)}(0)}{n!} = lim_{z to 0} frac{sum_{k=0}^n {k choose n} (-1)^{k-n} F(nz)}{z^n n!}$
$endgroup$
– reuns
3 hours ago






$begingroup$
Otherwise you can find the $a_n$ one by one from the asymptotic as $s to +infty$. I wonder if there is an analog of $c_n = frac{F^{(n)}(0)}{n!} = lim_{z to 0} frac{sum_{k=0}^n {k choose n} (-1)^{k-n} F(nz)}{z^n n!}$
$endgroup$
– reuns
3 hours ago












2 Answers
2






active

oldest

votes


















4












$begingroup$

Yes. If $f(s)$ has a finite abscissa of absolute convergence $sigma_a$, then $forall sigma > sigma_a$:
$$
lim_{Ttoinfty} frac{1}{2T} int_{-T}^{T} f(sigma+ it)n^{it} mathrm{d}t = frac{a_n}{n^{sigma}}.
$$

IIRC, the proof can be found in Apostol's book on Analytic Number Theory.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    I think it holds for $sigma > sigma_c$ the absicssa of simple convergence because $f(s) = (s-s_0)int_1^infty (sum_{m le x} a_m m^{-s_0}) x^{-s+s_0-1}dx = O(s)$ so we can replace $f(sigma+it)$ by $f(sigma+i.) ast frac{ k}{sqrt{2pi}} e^{-t^2 k^2/2} = sum_m a_m m^{-sigma-it} e^{- frac{ln^2m}{2 k^2}}$ to make it absolutely convergent
    $endgroup$
    – reuns
    3 hours ago



















4












$begingroup$

Even for more general Dirichlet series
$$f(z)=sum_{0}^infty a_n e^{-lambda_nz}$$
there is the formula
$$a_ne^{-lambda_nsigma}=lim_{Ttoinfty}frac{1}{T}int_{t_0}^Tf(sigma+it)e^{lambda_n it}dt,$$
where $t_0$ is arbitrary (real) and $sigma>sigma_u$, the abscissa of uniform convergence.



Ref. S. Mandelbrojt, Series de Dirichlet, Paris, Gauthier-Villars, 1969.






share|cite|improve this answer









$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "504"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f329980%2fextracting-dirichlet-series-coefficients%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Yes. If $f(s)$ has a finite abscissa of absolute convergence $sigma_a$, then $forall sigma > sigma_a$:
    $$
    lim_{Ttoinfty} frac{1}{2T} int_{-T}^{T} f(sigma+ it)n^{it} mathrm{d}t = frac{a_n}{n^{sigma}}.
    $$

    IIRC, the proof can be found in Apostol's book on Analytic Number Theory.






    share|cite|improve this answer









    $endgroup$









    • 1




      $begingroup$
      I think it holds for $sigma > sigma_c$ the absicssa of simple convergence because $f(s) = (s-s_0)int_1^infty (sum_{m le x} a_m m^{-s_0}) x^{-s+s_0-1}dx = O(s)$ so we can replace $f(sigma+it)$ by $f(sigma+i.) ast frac{ k}{sqrt{2pi}} e^{-t^2 k^2/2} = sum_m a_m m^{-sigma-it} e^{- frac{ln^2m}{2 k^2}}$ to make it absolutely convergent
      $endgroup$
      – reuns
      3 hours ago
















    4












    $begingroup$

    Yes. If $f(s)$ has a finite abscissa of absolute convergence $sigma_a$, then $forall sigma > sigma_a$:
    $$
    lim_{Ttoinfty} frac{1}{2T} int_{-T}^{T} f(sigma+ it)n^{it} mathrm{d}t = frac{a_n}{n^{sigma}}.
    $$

    IIRC, the proof can be found in Apostol's book on Analytic Number Theory.






    share|cite|improve this answer









    $endgroup$









    • 1




      $begingroup$
      I think it holds for $sigma > sigma_c$ the absicssa of simple convergence because $f(s) = (s-s_0)int_1^infty (sum_{m le x} a_m m^{-s_0}) x^{-s+s_0-1}dx = O(s)$ so we can replace $f(sigma+it)$ by $f(sigma+i.) ast frac{ k}{sqrt{2pi}} e^{-t^2 k^2/2} = sum_m a_m m^{-sigma-it} e^{- frac{ln^2m}{2 k^2}}$ to make it absolutely convergent
      $endgroup$
      – reuns
      3 hours ago














    4












    4








    4





    $begingroup$

    Yes. If $f(s)$ has a finite abscissa of absolute convergence $sigma_a$, then $forall sigma > sigma_a$:
    $$
    lim_{Ttoinfty} frac{1}{2T} int_{-T}^{T} f(sigma+ it)n^{it} mathrm{d}t = frac{a_n}{n^{sigma}}.
    $$

    IIRC, the proof can be found in Apostol's book on Analytic Number Theory.






    share|cite|improve this answer









    $endgroup$



    Yes. If $f(s)$ has a finite abscissa of absolute convergence $sigma_a$, then $forall sigma > sigma_a$:
    $$
    lim_{Ttoinfty} frac{1}{2T} int_{-T}^{T} f(sigma+ it)n^{it} mathrm{d}t = frac{a_n}{n^{sigma}}.
    $$

    IIRC, the proof can be found in Apostol's book on Analytic Number Theory.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 4 hours ago









    M.G.M.G.

    3,01022740




    3,01022740








    • 1




      $begingroup$
      I think it holds for $sigma > sigma_c$ the absicssa of simple convergence because $f(s) = (s-s_0)int_1^infty (sum_{m le x} a_m m^{-s_0}) x^{-s+s_0-1}dx = O(s)$ so we can replace $f(sigma+it)$ by $f(sigma+i.) ast frac{ k}{sqrt{2pi}} e^{-t^2 k^2/2} = sum_m a_m m^{-sigma-it} e^{- frac{ln^2m}{2 k^2}}$ to make it absolutely convergent
      $endgroup$
      – reuns
      3 hours ago














    • 1




      $begingroup$
      I think it holds for $sigma > sigma_c$ the absicssa of simple convergence because $f(s) = (s-s_0)int_1^infty (sum_{m le x} a_m m^{-s_0}) x^{-s+s_0-1}dx = O(s)$ so we can replace $f(sigma+it)$ by $f(sigma+i.) ast frac{ k}{sqrt{2pi}} e^{-t^2 k^2/2} = sum_m a_m m^{-sigma-it} e^{- frac{ln^2m}{2 k^2}}$ to make it absolutely convergent
      $endgroup$
      – reuns
      3 hours ago








    1




    1




    $begingroup$
    I think it holds for $sigma > sigma_c$ the absicssa of simple convergence because $f(s) = (s-s_0)int_1^infty (sum_{m le x} a_m m^{-s_0}) x^{-s+s_0-1}dx = O(s)$ so we can replace $f(sigma+it)$ by $f(sigma+i.) ast frac{ k}{sqrt{2pi}} e^{-t^2 k^2/2} = sum_m a_m m^{-sigma-it} e^{- frac{ln^2m}{2 k^2}}$ to make it absolutely convergent
    $endgroup$
    – reuns
    3 hours ago




    $begingroup$
    I think it holds for $sigma > sigma_c$ the absicssa of simple convergence because $f(s) = (s-s_0)int_1^infty (sum_{m le x} a_m m^{-s_0}) x^{-s+s_0-1}dx = O(s)$ so we can replace $f(sigma+it)$ by $f(sigma+i.) ast frac{ k}{sqrt{2pi}} e^{-t^2 k^2/2} = sum_m a_m m^{-sigma-it} e^{- frac{ln^2m}{2 k^2}}$ to make it absolutely convergent
    $endgroup$
    – reuns
    3 hours ago











    4












    $begingroup$

    Even for more general Dirichlet series
    $$f(z)=sum_{0}^infty a_n e^{-lambda_nz}$$
    there is the formula
    $$a_ne^{-lambda_nsigma}=lim_{Ttoinfty}frac{1}{T}int_{t_0}^Tf(sigma+it)e^{lambda_n it}dt,$$
    where $t_0$ is arbitrary (real) and $sigma>sigma_u$, the abscissa of uniform convergence.



    Ref. S. Mandelbrojt, Series de Dirichlet, Paris, Gauthier-Villars, 1969.






    share|cite|improve this answer









    $endgroup$


















      4












      $begingroup$

      Even for more general Dirichlet series
      $$f(z)=sum_{0}^infty a_n e^{-lambda_nz}$$
      there is the formula
      $$a_ne^{-lambda_nsigma}=lim_{Ttoinfty}frac{1}{T}int_{t_0}^Tf(sigma+it)e^{lambda_n it}dt,$$
      where $t_0$ is arbitrary (real) and $sigma>sigma_u$, the abscissa of uniform convergence.



      Ref. S. Mandelbrojt, Series de Dirichlet, Paris, Gauthier-Villars, 1969.






      share|cite|improve this answer









      $endgroup$
















        4












        4








        4





        $begingroup$

        Even for more general Dirichlet series
        $$f(z)=sum_{0}^infty a_n e^{-lambda_nz}$$
        there is the formula
        $$a_ne^{-lambda_nsigma}=lim_{Ttoinfty}frac{1}{T}int_{t_0}^Tf(sigma+it)e^{lambda_n it}dt,$$
        where $t_0$ is arbitrary (real) and $sigma>sigma_u$, the abscissa of uniform convergence.



        Ref. S. Mandelbrojt, Series de Dirichlet, Paris, Gauthier-Villars, 1969.






        share|cite|improve this answer









        $endgroup$



        Even for more general Dirichlet series
        $$f(z)=sum_{0}^infty a_n e^{-lambda_nz}$$
        there is the formula
        $$a_ne^{-lambda_nsigma}=lim_{Ttoinfty}frac{1}{T}int_{t_0}^Tf(sigma+it)e^{lambda_n it}dt,$$
        where $t_0$ is arbitrary (real) and $sigma>sigma_u$, the abscissa of uniform convergence.



        Ref. S. Mandelbrojt, Series de Dirichlet, Paris, Gauthier-Villars, 1969.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 3 hours ago









        Alexandre EremenkoAlexandre Eremenko

        51.9k6145265




        51.9k6145265






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f329980%2fextracting-dirichlet-series-coefficients%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How did Captain America manage to do this?

            迪纳利

            南乌拉尔铁路局