Why is the ratio of two extensive quantities always intensive?












12












$begingroup$


Is this something that we observe that always happens or is there some fundamental reason for two extensive quantities to give an intensive when divided?










share|cite|improve this question











$endgroup$

















    12












    $begingroup$


    Is this something that we observe that always happens or is there some fundamental reason for two extensive quantities to give an intensive when divided?










    share|cite|improve this question











    $endgroup$















      12












      12








      12


      1



      $begingroup$


      Is this something that we observe that always happens or is there some fundamental reason for two extensive quantities to give an intensive when divided?










      share|cite|improve this question











      $endgroup$




      Is this something that we observe that always happens or is there some fundamental reason for two extensive quantities to give an intensive when divided?







      thermodynamics definition volume scaling






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 days ago









      David Z

      63.9k23136252




      63.9k23136252










      asked 2 days ago









      paokara moupaokara mou

      1436




      1436






















          1 Answer
          1






          active

          oldest

          votes


















          18












          $begingroup$

          It is mainly a mathematical reason. Extensive quantities grow with system size. If two quantities scale in the same way with a variable (in this case system size), it cancels out in the division.



          Mini-example: $A$ and $B$ are extensive physical quantities both dependent on $n$. Their ratio is called $C = A / B$. If you scale the system up, $A$ and $B$ grow by a factor of $n$. What happens to $C$?



          $frac{A cdot n}{B cdot n} = frac{A}{B}$



          $C$ stays the same, irrespective of $n$. Hence, $C$ is intensive. The most common physical example is mass and volume, which scale with system size and still exhibit the same ratio, the density.



          EDIT including the comment of probably_someone: The argumentation is particularly true since by definition an extensive quantity grows linearly with system size. This justifies the proportionality that I presented in the mini-example.






          share|cite|improve this answer











          $endgroup$









          • 8




            $begingroup$
            In particular, this is true because "extensive" is specifically defined as growing linearly with system size (see e.g. en.wikipedia.org/wiki/Intensive_and_extensive_properties), which raises the question: what do we call a property that grows nonlinearly with system size (for example, as the square of the volume)?
            $endgroup$
            – probably_someone
            2 days ago










          • $begingroup$
            Yeah, I did not point this out explicitly. I added a few sentences to include the linearity.
            $endgroup$
            – lmr
            2 days ago










          • $begingroup$
            Technically couldn't the linear relations have different "slopes", so that the part dependant on the size still cancels, but there will be some extra constant factor multiplying your ratio there?
            $endgroup$
            – Aaron Stevens
            2 days ago










          • $begingroup$
            @AaronStevens Well mathematically, it is definitely possible. I can't think of a suitable example right now though. But as you pointed out yourself, the ratio will still remain intensive.
            $endgroup$
            – lmr
            2 days ago






          • 4




            $begingroup$
            @AaronStevens Whatever the factor is is already included in $A$ and $B$ in this answer. And in particular, if the quantities have different units then not only are the slopes different, they have different units so they are clearly very different, but all that is automatically accounted for in the division. Having the same unit but different magnitude is no different.
            $endgroup$
            – JiK
            2 days ago














          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "151"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470452%2fwhy-is-the-ratio-of-two-extensive-quantities-always-intensive%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          18












          $begingroup$

          It is mainly a mathematical reason. Extensive quantities grow with system size. If two quantities scale in the same way with a variable (in this case system size), it cancels out in the division.



          Mini-example: $A$ and $B$ are extensive physical quantities both dependent on $n$. Their ratio is called $C = A / B$. If you scale the system up, $A$ and $B$ grow by a factor of $n$. What happens to $C$?



          $frac{A cdot n}{B cdot n} = frac{A}{B}$



          $C$ stays the same, irrespective of $n$. Hence, $C$ is intensive. The most common physical example is mass and volume, which scale with system size and still exhibit the same ratio, the density.



          EDIT including the comment of probably_someone: The argumentation is particularly true since by definition an extensive quantity grows linearly with system size. This justifies the proportionality that I presented in the mini-example.






          share|cite|improve this answer











          $endgroup$









          • 8




            $begingroup$
            In particular, this is true because "extensive" is specifically defined as growing linearly with system size (see e.g. en.wikipedia.org/wiki/Intensive_and_extensive_properties), which raises the question: what do we call a property that grows nonlinearly with system size (for example, as the square of the volume)?
            $endgroup$
            – probably_someone
            2 days ago










          • $begingroup$
            Yeah, I did not point this out explicitly. I added a few sentences to include the linearity.
            $endgroup$
            – lmr
            2 days ago










          • $begingroup$
            Technically couldn't the linear relations have different "slopes", so that the part dependant on the size still cancels, but there will be some extra constant factor multiplying your ratio there?
            $endgroup$
            – Aaron Stevens
            2 days ago










          • $begingroup$
            @AaronStevens Well mathematically, it is definitely possible. I can't think of a suitable example right now though. But as you pointed out yourself, the ratio will still remain intensive.
            $endgroup$
            – lmr
            2 days ago






          • 4




            $begingroup$
            @AaronStevens Whatever the factor is is already included in $A$ and $B$ in this answer. And in particular, if the quantities have different units then not only are the slopes different, they have different units so they are clearly very different, but all that is automatically accounted for in the division. Having the same unit but different magnitude is no different.
            $endgroup$
            – JiK
            2 days ago


















          18












          $begingroup$

          It is mainly a mathematical reason. Extensive quantities grow with system size. If two quantities scale in the same way with a variable (in this case system size), it cancels out in the division.



          Mini-example: $A$ and $B$ are extensive physical quantities both dependent on $n$. Their ratio is called $C = A / B$. If you scale the system up, $A$ and $B$ grow by a factor of $n$. What happens to $C$?



          $frac{A cdot n}{B cdot n} = frac{A}{B}$



          $C$ stays the same, irrespective of $n$. Hence, $C$ is intensive. The most common physical example is mass and volume, which scale with system size and still exhibit the same ratio, the density.



          EDIT including the comment of probably_someone: The argumentation is particularly true since by definition an extensive quantity grows linearly with system size. This justifies the proportionality that I presented in the mini-example.






          share|cite|improve this answer











          $endgroup$









          • 8




            $begingroup$
            In particular, this is true because "extensive" is specifically defined as growing linearly with system size (see e.g. en.wikipedia.org/wiki/Intensive_and_extensive_properties), which raises the question: what do we call a property that grows nonlinearly with system size (for example, as the square of the volume)?
            $endgroup$
            – probably_someone
            2 days ago










          • $begingroup$
            Yeah, I did not point this out explicitly. I added a few sentences to include the linearity.
            $endgroup$
            – lmr
            2 days ago










          • $begingroup$
            Technically couldn't the linear relations have different "slopes", so that the part dependant on the size still cancels, but there will be some extra constant factor multiplying your ratio there?
            $endgroup$
            – Aaron Stevens
            2 days ago










          • $begingroup$
            @AaronStevens Well mathematically, it is definitely possible. I can't think of a suitable example right now though. But as you pointed out yourself, the ratio will still remain intensive.
            $endgroup$
            – lmr
            2 days ago






          • 4




            $begingroup$
            @AaronStevens Whatever the factor is is already included in $A$ and $B$ in this answer. And in particular, if the quantities have different units then not only are the slopes different, they have different units so they are clearly very different, but all that is automatically accounted for in the division. Having the same unit but different magnitude is no different.
            $endgroup$
            – JiK
            2 days ago
















          18












          18








          18





          $begingroup$

          It is mainly a mathematical reason. Extensive quantities grow with system size. If two quantities scale in the same way with a variable (in this case system size), it cancels out in the division.



          Mini-example: $A$ and $B$ are extensive physical quantities both dependent on $n$. Their ratio is called $C = A / B$. If you scale the system up, $A$ and $B$ grow by a factor of $n$. What happens to $C$?



          $frac{A cdot n}{B cdot n} = frac{A}{B}$



          $C$ stays the same, irrespective of $n$. Hence, $C$ is intensive. The most common physical example is mass and volume, which scale with system size and still exhibit the same ratio, the density.



          EDIT including the comment of probably_someone: The argumentation is particularly true since by definition an extensive quantity grows linearly with system size. This justifies the proportionality that I presented in the mini-example.






          share|cite|improve this answer











          $endgroup$



          It is mainly a mathematical reason. Extensive quantities grow with system size. If two quantities scale in the same way with a variable (in this case system size), it cancels out in the division.



          Mini-example: $A$ and $B$ are extensive physical quantities both dependent on $n$. Their ratio is called $C = A / B$. If you scale the system up, $A$ and $B$ grow by a factor of $n$. What happens to $C$?



          $frac{A cdot n}{B cdot n} = frac{A}{B}$



          $C$ stays the same, irrespective of $n$. Hence, $C$ is intensive. The most common physical example is mass and volume, which scale with system size and still exhibit the same ratio, the density.



          EDIT including the comment of probably_someone: The argumentation is particularly true since by definition an extensive quantity grows linearly with system size. This justifies the proportionality that I presented in the mini-example.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 2 days ago

























          answered 2 days ago









          lmrlmr

          1,074520




          1,074520








          • 8




            $begingroup$
            In particular, this is true because "extensive" is specifically defined as growing linearly with system size (see e.g. en.wikipedia.org/wiki/Intensive_and_extensive_properties), which raises the question: what do we call a property that grows nonlinearly with system size (for example, as the square of the volume)?
            $endgroup$
            – probably_someone
            2 days ago










          • $begingroup$
            Yeah, I did not point this out explicitly. I added a few sentences to include the linearity.
            $endgroup$
            – lmr
            2 days ago










          • $begingroup$
            Technically couldn't the linear relations have different "slopes", so that the part dependant on the size still cancels, but there will be some extra constant factor multiplying your ratio there?
            $endgroup$
            – Aaron Stevens
            2 days ago










          • $begingroup$
            @AaronStevens Well mathematically, it is definitely possible. I can't think of a suitable example right now though. But as you pointed out yourself, the ratio will still remain intensive.
            $endgroup$
            – lmr
            2 days ago






          • 4




            $begingroup$
            @AaronStevens Whatever the factor is is already included in $A$ and $B$ in this answer. And in particular, if the quantities have different units then not only are the slopes different, they have different units so they are clearly very different, but all that is automatically accounted for in the division. Having the same unit but different magnitude is no different.
            $endgroup$
            – JiK
            2 days ago
















          • 8




            $begingroup$
            In particular, this is true because "extensive" is specifically defined as growing linearly with system size (see e.g. en.wikipedia.org/wiki/Intensive_and_extensive_properties), which raises the question: what do we call a property that grows nonlinearly with system size (for example, as the square of the volume)?
            $endgroup$
            – probably_someone
            2 days ago










          • $begingroup$
            Yeah, I did not point this out explicitly. I added a few sentences to include the linearity.
            $endgroup$
            – lmr
            2 days ago










          • $begingroup$
            Technically couldn't the linear relations have different "slopes", so that the part dependant on the size still cancels, but there will be some extra constant factor multiplying your ratio there?
            $endgroup$
            – Aaron Stevens
            2 days ago










          • $begingroup$
            @AaronStevens Well mathematically, it is definitely possible. I can't think of a suitable example right now though. But as you pointed out yourself, the ratio will still remain intensive.
            $endgroup$
            – lmr
            2 days ago






          • 4




            $begingroup$
            @AaronStevens Whatever the factor is is already included in $A$ and $B$ in this answer. And in particular, if the quantities have different units then not only are the slopes different, they have different units so they are clearly very different, but all that is automatically accounted for in the division. Having the same unit but different magnitude is no different.
            $endgroup$
            – JiK
            2 days ago










          8




          8




          $begingroup$
          In particular, this is true because "extensive" is specifically defined as growing linearly with system size (see e.g. en.wikipedia.org/wiki/Intensive_and_extensive_properties), which raises the question: what do we call a property that grows nonlinearly with system size (for example, as the square of the volume)?
          $endgroup$
          – probably_someone
          2 days ago




          $begingroup$
          In particular, this is true because "extensive" is specifically defined as growing linearly with system size (see e.g. en.wikipedia.org/wiki/Intensive_and_extensive_properties), which raises the question: what do we call a property that grows nonlinearly with system size (for example, as the square of the volume)?
          $endgroup$
          – probably_someone
          2 days ago












          $begingroup$
          Yeah, I did not point this out explicitly. I added a few sentences to include the linearity.
          $endgroup$
          – lmr
          2 days ago




          $begingroup$
          Yeah, I did not point this out explicitly. I added a few sentences to include the linearity.
          $endgroup$
          – lmr
          2 days ago












          $begingroup$
          Technically couldn't the linear relations have different "slopes", so that the part dependant on the size still cancels, but there will be some extra constant factor multiplying your ratio there?
          $endgroup$
          – Aaron Stevens
          2 days ago




          $begingroup$
          Technically couldn't the linear relations have different "slopes", so that the part dependant on the size still cancels, but there will be some extra constant factor multiplying your ratio there?
          $endgroup$
          – Aaron Stevens
          2 days ago












          $begingroup$
          @AaronStevens Well mathematically, it is definitely possible. I can't think of a suitable example right now though. But as you pointed out yourself, the ratio will still remain intensive.
          $endgroup$
          – lmr
          2 days ago




          $begingroup$
          @AaronStevens Well mathematically, it is definitely possible. I can't think of a suitable example right now though. But as you pointed out yourself, the ratio will still remain intensive.
          $endgroup$
          – lmr
          2 days ago




          4




          4




          $begingroup$
          @AaronStevens Whatever the factor is is already included in $A$ and $B$ in this answer. And in particular, if the quantities have different units then not only are the slopes different, they have different units so they are clearly very different, but all that is automatically accounted for in the division. Having the same unit but different magnitude is no different.
          $endgroup$
          – JiK
          2 days ago






          $begingroup$
          @AaronStevens Whatever the factor is is already included in $A$ and $B$ in this answer. And in particular, if the quantities have different units then not only are the slopes different, they have different units so they are clearly very different, but all that is automatically accounted for in the division. Having the same unit but different magnitude is no different.
          $endgroup$
          – JiK
          2 days ago




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Physics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470452%2fwhy-is-the-ratio-of-two-extensive-quantities-always-intensive%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How did Captain America manage to do this?

          迪纳利

          南乌拉尔铁路局