Limit of weak equivalences in a Bousfield localization












3














Let $M$ be a model category and $C$ a class of maps in it, and assume the left Bousfield localization $L_CM$ exists. Suppose we are given sequences of maps $(p_{n+1}: X_{n+1}to X_n), (q_{n+1}: Y_{n+1}to Y_n), (f_n: X_nto Y_n), n=0, 1,ldots$ with $q_{n+1}f_{n+1}=f_np_{n+1}$, so we get a ladder of commutative squares. If each $p_n$ is a fibration of fibrants in $M$, each $q_n$ is a fibration of fibrants in $L_CM$, and each $f_n$ is a weak equivalence in $L_CM$, can we conclude that the limit map $lim f_n$ is also a weak equivalence in $L_CM$?



For the notion of left Bousfield localization, see Hirschhorn, Model categories and their localizations, chapter 3, 4. See Proposition 15.10.12 in that book for a similar result, my question is by weakening the assumption as well as the conclusion. You may add suitable and reasonable conditions—like simplicial, properness, cofibrantly generated, etc.—if needed.










share|cite|improve this question





























    3














    Let $M$ be a model category and $C$ a class of maps in it, and assume the left Bousfield localization $L_CM$ exists. Suppose we are given sequences of maps $(p_{n+1}: X_{n+1}to X_n), (q_{n+1}: Y_{n+1}to Y_n), (f_n: X_nto Y_n), n=0, 1,ldots$ with $q_{n+1}f_{n+1}=f_np_{n+1}$, so we get a ladder of commutative squares. If each $p_n$ is a fibration of fibrants in $M$, each $q_n$ is a fibration of fibrants in $L_CM$, and each $f_n$ is a weak equivalence in $L_CM$, can we conclude that the limit map $lim f_n$ is also a weak equivalence in $L_CM$?



    For the notion of left Bousfield localization, see Hirschhorn, Model categories and their localizations, chapter 3, 4. See Proposition 15.10.12 in that book for a similar result, my question is by weakening the assumption as well as the conclusion. You may add suitable and reasonable conditions—like simplicial, properness, cofibrantly generated, etc.—if needed.










    share|cite|improve this question



























      3












      3








      3







      Let $M$ be a model category and $C$ a class of maps in it, and assume the left Bousfield localization $L_CM$ exists. Suppose we are given sequences of maps $(p_{n+1}: X_{n+1}to X_n), (q_{n+1}: Y_{n+1}to Y_n), (f_n: X_nto Y_n), n=0, 1,ldots$ with $q_{n+1}f_{n+1}=f_np_{n+1}$, so we get a ladder of commutative squares. If each $p_n$ is a fibration of fibrants in $M$, each $q_n$ is a fibration of fibrants in $L_CM$, and each $f_n$ is a weak equivalence in $L_CM$, can we conclude that the limit map $lim f_n$ is also a weak equivalence in $L_CM$?



      For the notion of left Bousfield localization, see Hirschhorn, Model categories and their localizations, chapter 3, 4. See Proposition 15.10.12 in that book for a similar result, my question is by weakening the assumption as well as the conclusion. You may add suitable and reasonable conditions—like simplicial, properness, cofibrantly generated, etc.—if needed.










      share|cite|improve this question















      Let $M$ be a model category and $C$ a class of maps in it, and assume the left Bousfield localization $L_CM$ exists. Suppose we are given sequences of maps $(p_{n+1}: X_{n+1}to X_n), (q_{n+1}: Y_{n+1}to Y_n), (f_n: X_nto Y_n), n=0, 1,ldots$ with $q_{n+1}f_{n+1}=f_np_{n+1}$, so we get a ladder of commutative squares. If each $p_n$ is a fibration of fibrants in $M$, each $q_n$ is a fibration of fibrants in $L_CM$, and each $f_n$ is a weak equivalence in $L_CM$, can we conclude that the limit map $lim f_n$ is also a weak equivalence in $L_CM$?



      For the notion of left Bousfield localization, see Hirschhorn, Model categories and their localizations, chapter 3, 4. See Proposition 15.10.12 in that book for a similar result, my question is by weakening the assumption as well as the conclusion. You may add suitable and reasonable conditions—like simplicial, properness, cofibrantly generated, etc.—if needed.







      homotopy-theory model-categories bousfield-localization






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 8 hours ago

























      asked 8 hours ago









      Lao-tzu

      396212




      396212






















          2 Answers
          2






          active

          oldest

          votes


















          2














          No. For a counterexample to your claim, consider the model category M
          of simplicial presheaves on a small site S equipped with the projective
          model structure.
          Its fibrant objects are presheaves of Kan complexes.
          If C is the set of Čech covers of S, then L_C(M) is the local projective
          model structure on simplicial presheaves.
          Its fibrant objects are presheaves of Kan complexes that satisfy homotopy descent.
          A weak equivalence from a fibrant object in M to a fibrant object in L_C(M)
          is a homotopy sheafification map.
          Furthermore, the limit of p and q is a homotopy limit in M,
          so lim f_n is a weak equivalence if and only if the homotopy sheafification
          functor preserves homotopy limits of towers.
          This is false for arbitrary sites.






          share|cite|improve this answer





























            2














            In the language of $infty$-categories, which makes it a bit clearer, this is asking for the reflector (left adjoint) of the inclusion of a reflective subcategory to preserve filtered limits. This isn't true for ordinary categories, and there is also no reason to expect it to be true for $infty$-categories.



            Hirschhorn's Proposition 15.10.12 says that the homotopy limit of a tower of fibrations can be computed as the ordinary limit. Your modification asks for this homotopy limit to be preserved by the reflector (localization functor).






            share|cite|improve this answer

















            • 1




              As for a condition for this to hold, it's true if the $f_n$ are $M$-equivalences, but this makes the statement trivial, since it implies that the $X_n$ are $C$-local and forces the $p_n$ to be local fibrations (by the usual results about left Bousfield localization, being $C$-local is invariant under $M$-equivalence and $M$-fibrations between local objects are also local fibrations.)
              – Harry Gindi
              1 hour ago













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "504"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f319485%2flimit-of-weak-equivalences-in-a-bousfield-localization%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2














            No. For a counterexample to your claim, consider the model category M
            of simplicial presheaves on a small site S equipped with the projective
            model structure.
            Its fibrant objects are presheaves of Kan complexes.
            If C is the set of Čech covers of S, then L_C(M) is the local projective
            model structure on simplicial presheaves.
            Its fibrant objects are presheaves of Kan complexes that satisfy homotopy descent.
            A weak equivalence from a fibrant object in M to a fibrant object in L_C(M)
            is a homotopy sheafification map.
            Furthermore, the limit of p and q is a homotopy limit in M,
            so lim f_n is a weak equivalence if and only if the homotopy sheafification
            functor preserves homotopy limits of towers.
            This is false for arbitrary sites.






            share|cite|improve this answer


























              2














              No. For a counterexample to your claim, consider the model category M
              of simplicial presheaves on a small site S equipped with the projective
              model structure.
              Its fibrant objects are presheaves of Kan complexes.
              If C is the set of Čech covers of S, then L_C(M) is the local projective
              model structure on simplicial presheaves.
              Its fibrant objects are presheaves of Kan complexes that satisfy homotopy descent.
              A weak equivalence from a fibrant object in M to a fibrant object in L_C(M)
              is a homotopy sheafification map.
              Furthermore, the limit of p and q is a homotopy limit in M,
              so lim f_n is a weak equivalence if and only if the homotopy sheafification
              functor preserves homotopy limits of towers.
              This is false for arbitrary sites.






              share|cite|improve this answer
























                2












                2








                2






                No. For a counterexample to your claim, consider the model category M
                of simplicial presheaves on a small site S equipped with the projective
                model structure.
                Its fibrant objects are presheaves of Kan complexes.
                If C is the set of Čech covers of S, then L_C(M) is the local projective
                model structure on simplicial presheaves.
                Its fibrant objects are presheaves of Kan complexes that satisfy homotopy descent.
                A weak equivalence from a fibrant object in M to a fibrant object in L_C(M)
                is a homotopy sheafification map.
                Furthermore, the limit of p and q is a homotopy limit in M,
                so lim f_n is a weak equivalence if and only if the homotopy sheafification
                functor preserves homotopy limits of towers.
                This is false for arbitrary sites.






                share|cite|improve this answer












                No. For a counterexample to your claim, consider the model category M
                of simplicial presheaves on a small site S equipped with the projective
                model structure.
                Its fibrant objects are presheaves of Kan complexes.
                If C is the set of Čech covers of S, then L_C(M) is the local projective
                model structure on simplicial presheaves.
                Its fibrant objects are presheaves of Kan complexes that satisfy homotopy descent.
                A weak equivalence from a fibrant object in M to a fibrant object in L_C(M)
                is a homotopy sheafification map.
                Furthermore, the limit of p and q is a homotopy limit in M,
                so lim f_n is a weak equivalence if and only if the homotopy sheafification
                functor preserves homotopy limits of towers.
                This is false for arbitrary sites.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 2 hours ago









                Dmitri Pavlov

                12.9k43482




                12.9k43482























                    2














                    In the language of $infty$-categories, which makes it a bit clearer, this is asking for the reflector (left adjoint) of the inclusion of a reflective subcategory to preserve filtered limits. This isn't true for ordinary categories, and there is also no reason to expect it to be true for $infty$-categories.



                    Hirschhorn's Proposition 15.10.12 says that the homotopy limit of a tower of fibrations can be computed as the ordinary limit. Your modification asks for this homotopy limit to be preserved by the reflector (localization functor).






                    share|cite|improve this answer

















                    • 1




                      As for a condition for this to hold, it's true if the $f_n$ are $M$-equivalences, but this makes the statement trivial, since it implies that the $X_n$ are $C$-local and forces the $p_n$ to be local fibrations (by the usual results about left Bousfield localization, being $C$-local is invariant under $M$-equivalence and $M$-fibrations between local objects are also local fibrations.)
                      – Harry Gindi
                      1 hour ago


















                    2














                    In the language of $infty$-categories, which makes it a bit clearer, this is asking for the reflector (left adjoint) of the inclusion of a reflective subcategory to preserve filtered limits. This isn't true for ordinary categories, and there is also no reason to expect it to be true for $infty$-categories.



                    Hirschhorn's Proposition 15.10.12 says that the homotopy limit of a tower of fibrations can be computed as the ordinary limit. Your modification asks for this homotopy limit to be preserved by the reflector (localization functor).






                    share|cite|improve this answer

















                    • 1




                      As for a condition for this to hold, it's true if the $f_n$ are $M$-equivalences, but this makes the statement trivial, since it implies that the $X_n$ are $C$-local and forces the $p_n$ to be local fibrations (by the usual results about left Bousfield localization, being $C$-local is invariant under $M$-equivalence and $M$-fibrations between local objects are also local fibrations.)
                      – Harry Gindi
                      1 hour ago
















                    2












                    2








                    2






                    In the language of $infty$-categories, which makes it a bit clearer, this is asking for the reflector (left adjoint) of the inclusion of a reflective subcategory to preserve filtered limits. This isn't true for ordinary categories, and there is also no reason to expect it to be true for $infty$-categories.



                    Hirschhorn's Proposition 15.10.12 says that the homotopy limit of a tower of fibrations can be computed as the ordinary limit. Your modification asks for this homotopy limit to be preserved by the reflector (localization functor).






                    share|cite|improve this answer












                    In the language of $infty$-categories, which makes it a bit clearer, this is asking for the reflector (left adjoint) of the inclusion of a reflective subcategory to preserve filtered limits. This isn't true for ordinary categories, and there is also no reason to expect it to be true for $infty$-categories.



                    Hirschhorn's Proposition 15.10.12 says that the homotopy limit of a tower of fibrations can be computed as the ordinary limit. Your modification asks for this homotopy limit to be preserved by the reflector (localization functor).







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 1 hour ago









                    Harry Gindi

                    8,799675168




                    8,799675168








                    • 1




                      As for a condition for this to hold, it's true if the $f_n$ are $M$-equivalences, but this makes the statement trivial, since it implies that the $X_n$ are $C$-local and forces the $p_n$ to be local fibrations (by the usual results about left Bousfield localization, being $C$-local is invariant under $M$-equivalence and $M$-fibrations between local objects are also local fibrations.)
                      – Harry Gindi
                      1 hour ago
















                    • 1




                      As for a condition for this to hold, it's true if the $f_n$ are $M$-equivalences, but this makes the statement trivial, since it implies that the $X_n$ are $C$-local and forces the $p_n$ to be local fibrations (by the usual results about left Bousfield localization, being $C$-local is invariant under $M$-equivalence and $M$-fibrations between local objects are also local fibrations.)
                      – Harry Gindi
                      1 hour ago










                    1




                    1




                    As for a condition for this to hold, it's true if the $f_n$ are $M$-equivalences, but this makes the statement trivial, since it implies that the $X_n$ are $C$-local and forces the $p_n$ to be local fibrations (by the usual results about left Bousfield localization, being $C$-local is invariant under $M$-equivalence and $M$-fibrations between local objects are also local fibrations.)
                    – Harry Gindi
                    1 hour ago






                    As for a condition for this to hold, it's true if the $f_n$ are $M$-equivalences, but this makes the statement trivial, since it implies that the $X_n$ are $C$-local and forces the $p_n$ to be local fibrations (by the usual results about left Bousfield localization, being $C$-local is invariant under $M$-equivalence and $M$-fibrations between local objects are also local fibrations.)
                    – Harry Gindi
                    1 hour ago




















                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to MathOverflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f319485%2flimit-of-weak-equivalences-in-a-bousfield-localization%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    數位音樂下載

                    When can things happen in Etherscan, such as the picture below?

                    格利澤436b