A curious inequality concerning binomial coefficients
$begingroup$
Has anyone seen an inequality of this form before? It seems to be true (based on extensive testing), but I am not able to prove it.
Let $a_1,a_2,ldots,a_k$ be non-negative integers such that $sum_i a_i = A$. Then, for any non-negative integer $B le A$:
$$
sum_{(b_1,ldots,b_k): sum_i b_i = B} prod_i frac{binom{a_i}{b_i}}{binom{A-a_i}{B-b_i}} ge {binom{A}{B}}^{2-k}.
$$
The sum on the left is over all tuples $(b_1,b_2,ldots,b_k)$ of non-negative integers, with $b_i le a_i$ for all $i$, whose sum is equal to $B$.
inequalities binomial-coefficients
$endgroup$
add a comment |
$begingroup$
Has anyone seen an inequality of this form before? It seems to be true (based on extensive testing), but I am not able to prove it.
Let $a_1,a_2,ldots,a_k$ be non-negative integers such that $sum_i a_i = A$. Then, for any non-negative integer $B le A$:
$$
sum_{(b_1,ldots,b_k): sum_i b_i = B} prod_i frac{binom{a_i}{b_i}}{binom{A-a_i}{B-b_i}} ge {binom{A}{B}}^{2-k}.
$$
The sum on the left is over all tuples $(b_1,b_2,ldots,b_k)$ of non-negative integers, with $b_i le a_i$ for all $i$, whose sum is equal to $B$.
inequalities binomial-coefficients
$endgroup$
add a comment |
$begingroup$
Has anyone seen an inequality of this form before? It seems to be true (based on extensive testing), but I am not able to prove it.
Let $a_1,a_2,ldots,a_k$ be non-negative integers such that $sum_i a_i = A$. Then, for any non-negative integer $B le A$:
$$
sum_{(b_1,ldots,b_k): sum_i b_i = B} prod_i frac{binom{a_i}{b_i}}{binom{A-a_i}{B-b_i}} ge {binom{A}{B}}^{2-k}.
$$
The sum on the left is over all tuples $(b_1,b_2,ldots,b_k)$ of non-negative integers, with $b_i le a_i$ for all $i$, whose sum is equal to $B$.
inequalities binomial-coefficients
$endgroup$
Has anyone seen an inequality of this form before? It seems to be true (based on extensive testing), but I am not able to prove it.
Let $a_1,a_2,ldots,a_k$ be non-negative integers such that $sum_i a_i = A$. Then, for any non-negative integer $B le A$:
$$
sum_{(b_1,ldots,b_k): sum_i b_i = B} prod_i frac{binom{a_i}{b_i}}{binom{A-a_i}{B-b_i}} ge {binom{A}{B}}^{2-k}.
$$
The sum on the left is over all tuples $(b_1,b_2,ldots,b_k)$ of non-negative integers, with $b_i le a_i$ for all $i$, whose sum is equal to $B$.
inequalities binomial-coefficients
inequalities binomial-coefficients
asked 14 hours ago
Navin K.Navin K.
682
682
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
By Cauchy–Bunyakovsky–Schwarz inequality we have
$$
left(sum prod_i frac{binom{a_i}{b_i}}{binom{A-a_i}{B-b_i}}right)left(sumprod_i binom{a_i}{b_i}binom{A-a_i}{B-b_i}right)geqslant
left(sum prod_ibinom{a_i}{b_i}right)^2=binom{A}{B}^2
.$$
Thus it suffices to prove that
$$
sumprod_i binom{a_i}{b_i}binom{A-a_i}{B-b_i}leqslant binom{A}B^k.
$$
But RHS is just the sum of the same guys without the restriction $sum b_i=B$.
$endgroup$
$begingroup$
Brilliant! Thank you.
$endgroup$
– Navin K.
6 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "504"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325354%2fa-curious-inequality-concerning-binomial-coefficients%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By Cauchy–Bunyakovsky–Schwarz inequality we have
$$
left(sum prod_i frac{binom{a_i}{b_i}}{binom{A-a_i}{B-b_i}}right)left(sumprod_i binom{a_i}{b_i}binom{A-a_i}{B-b_i}right)geqslant
left(sum prod_ibinom{a_i}{b_i}right)^2=binom{A}{B}^2
.$$
Thus it suffices to prove that
$$
sumprod_i binom{a_i}{b_i}binom{A-a_i}{B-b_i}leqslant binom{A}B^k.
$$
But RHS is just the sum of the same guys without the restriction $sum b_i=B$.
$endgroup$
$begingroup$
Brilliant! Thank you.
$endgroup$
– Navin K.
6 hours ago
add a comment |
$begingroup$
By Cauchy–Bunyakovsky–Schwarz inequality we have
$$
left(sum prod_i frac{binom{a_i}{b_i}}{binom{A-a_i}{B-b_i}}right)left(sumprod_i binom{a_i}{b_i}binom{A-a_i}{B-b_i}right)geqslant
left(sum prod_ibinom{a_i}{b_i}right)^2=binom{A}{B}^2
.$$
Thus it suffices to prove that
$$
sumprod_i binom{a_i}{b_i}binom{A-a_i}{B-b_i}leqslant binom{A}B^k.
$$
But RHS is just the sum of the same guys without the restriction $sum b_i=B$.
$endgroup$
$begingroup$
Brilliant! Thank you.
$endgroup$
– Navin K.
6 hours ago
add a comment |
$begingroup$
By Cauchy–Bunyakovsky–Schwarz inequality we have
$$
left(sum prod_i frac{binom{a_i}{b_i}}{binom{A-a_i}{B-b_i}}right)left(sumprod_i binom{a_i}{b_i}binom{A-a_i}{B-b_i}right)geqslant
left(sum prod_ibinom{a_i}{b_i}right)^2=binom{A}{B}^2
.$$
Thus it suffices to prove that
$$
sumprod_i binom{a_i}{b_i}binom{A-a_i}{B-b_i}leqslant binom{A}B^k.
$$
But RHS is just the sum of the same guys without the restriction $sum b_i=B$.
$endgroup$
By Cauchy–Bunyakovsky–Schwarz inequality we have
$$
left(sum prod_i frac{binom{a_i}{b_i}}{binom{A-a_i}{B-b_i}}right)left(sumprod_i binom{a_i}{b_i}binom{A-a_i}{B-b_i}right)geqslant
left(sum prod_ibinom{a_i}{b_i}right)^2=binom{A}{B}^2
.$$
Thus it suffices to prove that
$$
sumprod_i binom{a_i}{b_i}binom{A-a_i}{B-b_i}leqslant binom{A}B^k.
$$
But RHS is just the sum of the same guys without the restriction $sum b_i=B$.
answered 11 hours ago
Fedor PetrovFedor Petrov
50.9k6117233
50.9k6117233
$begingroup$
Brilliant! Thank you.
$endgroup$
– Navin K.
6 hours ago
add a comment |
$begingroup$
Brilliant! Thank you.
$endgroup$
– Navin K.
6 hours ago
$begingroup$
Brilliant! Thank you.
$endgroup$
– Navin K.
6 hours ago
$begingroup$
Brilliant! Thank you.
$endgroup$
– Navin K.
6 hours ago
add a comment |
Thanks for contributing an answer to MathOverflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325354%2fa-curious-inequality-concerning-binomial-coefficients%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown