A question about fixed points and non-expansive map












2












$begingroup$


Let $$K={x=(x(n))_nin l_2(mathbb{N}):|x|_2le 1 text{ and } x(n)ge 0 text{ for all } nin mathbb{N} }$$ and define $T:Kto c_0$ by $T(x)=(1-|x|_2,x(1),x(2),ldots)$. Prove :



(1) $T$ is self map on $K$ and $|Tx-Ty|_2le sqrt{2} |x-y|_2$



(2) $T $ does not have fixed points in $K$



my attempt



for (2):



suppose $T$ have fixed point i.e., $Tx=x$



then $(1-|x|_2, x(1),x(2),ldots)=(x(1),x(2),ldots)$



then $x(1)=1-|x|_2, x(2)=x(1), x(3)=x(2),ldots$



$$therefore |x|_2 =left(sum ^n_{n=infty} |x(n)|^2right)^frac{1}{2} = left(sum ^n_{n=infty} (1-|x|_2)^2right)^frac{1}{2}$$



but how to prove this $x$ is not in $K$?



how to prove (1)










share|cite|improve this question











$endgroup$












  • $begingroup$
    It seems that your calculation does not match the definition of $T$.
    $endgroup$
    – Song
    yesterday












  • $begingroup$
    @Song..now i edited correctly thank you
    $endgroup$
    – Inverse Problem
    yesterday
















2












$begingroup$


Let $$K={x=(x(n))_nin l_2(mathbb{N}):|x|_2le 1 text{ and } x(n)ge 0 text{ for all } nin mathbb{N} }$$ and define $T:Kto c_0$ by $T(x)=(1-|x|_2,x(1),x(2),ldots)$. Prove :



(1) $T$ is self map on $K$ and $|Tx-Ty|_2le sqrt{2} |x-y|_2$



(2) $T $ does not have fixed points in $K$



my attempt



for (2):



suppose $T$ have fixed point i.e., $Tx=x$



then $(1-|x|_2, x(1),x(2),ldots)=(x(1),x(2),ldots)$



then $x(1)=1-|x|_2, x(2)=x(1), x(3)=x(2),ldots$



$$therefore |x|_2 =left(sum ^n_{n=infty} |x(n)|^2right)^frac{1}{2} = left(sum ^n_{n=infty} (1-|x|_2)^2right)^frac{1}{2}$$



but how to prove this $x$ is not in $K$?



how to prove (1)










share|cite|improve this question











$endgroup$












  • $begingroup$
    It seems that your calculation does not match the definition of $T$.
    $endgroup$
    – Song
    yesterday












  • $begingroup$
    @Song..now i edited correctly thank you
    $endgroup$
    – Inverse Problem
    yesterday














2












2








2


1



$begingroup$


Let $$K={x=(x(n))_nin l_2(mathbb{N}):|x|_2le 1 text{ and } x(n)ge 0 text{ for all } nin mathbb{N} }$$ and define $T:Kto c_0$ by $T(x)=(1-|x|_2,x(1),x(2),ldots)$. Prove :



(1) $T$ is self map on $K$ and $|Tx-Ty|_2le sqrt{2} |x-y|_2$



(2) $T $ does not have fixed points in $K$



my attempt



for (2):



suppose $T$ have fixed point i.e., $Tx=x$



then $(1-|x|_2, x(1),x(2),ldots)=(x(1),x(2),ldots)$



then $x(1)=1-|x|_2, x(2)=x(1), x(3)=x(2),ldots$



$$therefore |x|_2 =left(sum ^n_{n=infty} |x(n)|^2right)^frac{1}{2} = left(sum ^n_{n=infty} (1-|x|_2)^2right)^frac{1}{2}$$



but how to prove this $x$ is not in $K$?



how to prove (1)










share|cite|improve this question











$endgroup$




Let $$K={x=(x(n))_nin l_2(mathbb{N}):|x|_2le 1 text{ and } x(n)ge 0 text{ for all } nin mathbb{N} }$$ and define $T:Kto c_0$ by $T(x)=(1-|x|_2,x(1),x(2),ldots)$. Prove :



(1) $T$ is self map on $K$ and $|Tx-Ty|_2le sqrt{2} |x-y|_2$



(2) $T $ does not have fixed points in $K$



my attempt



for (2):



suppose $T$ have fixed point i.e., $Tx=x$



then $(1-|x|_2, x(1),x(2),ldots)=(x(1),x(2),ldots)$



then $x(1)=1-|x|_2, x(2)=x(1), x(3)=x(2),ldots$



$$therefore |x|_2 =left(sum ^n_{n=infty} |x(n)|^2right)^frac{1}{2} = left(sum ^n_{n=infty} (1-|x|_2)^2right)^frac{1}{2}$$



but how to prove this $x$ is not in $K$?



how to prove (1)







functional-analysis fixed-point-theorems






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday









mechanodroid

29k62648




29k62648










asked yesterday









Inverse ProblemInverse Problem

1,028918




1,028918












  • $begingroup$
    It seems that your calculation does not match the definition of $T$.
    $endgroup$
    – Song
    yesterday












  • $begingroup$
    @Song..now i edited correctly thank you
    $endgroup$
    – Inverse Problem
    yesterday


















  • $begingroup$
    It seems that your calculation does not match the definition of $T$.
    $endgroup$
    – Song
    yesterday












  • $begingroup$
    @Song..now i edited correctly thank you
    $endgroup$
    – Inverse Problem
    yesterday
















$begingroup$
It seems that your calculation does not match the definition of $T$.
$endgroup$
– Song
yesterday






$begingroup$
It seems that your calculation does not match the definition of $T$.
$endgroup$
– Song
yesterday














$begingroup$
@Song..now i edited correctly thank you
$endgroup$
– Inverse Problem
yesterday




$begingroup$
@Song..now i edited correctly thank you
$endgroup$
– Inverse Problem
yesterday










3 Answers
3






active

oldest

votes


















2












$begingroup$

For $(2)$ you got that if $Tx = x$ then $$x = (1-|x|_2, 1-|x|_2, ldots)$$



so $$+infty > |x|_2^2 = sum_{n=1}^infty (1-|x|_2)^2$$
The only way this series converges is if $1-|x|_2 = 0$, or $|x|_2 = 1$, so $x = (1,1,1ldots )$. But then clearly $|x|_2 = +infty$ and not $1$ so this is a contradiction.






To show that $T$ is actually a map $K to K$, take $x in K$ and we claim that $Tx in K$ as well.

Since $|x|_2 le 1$ we have $1-|x|_2 ge 0$ so



begin{align}
|Tx|_2^2 &= (1-|x|_2)^2 + sum_{n=1}^infty |x_n|^2 \
&= (1-|x|_2)^2 + |x|_2^2 \
&le (1-|x|_2)^2 + 2(1-|x|_2)|x|_2 + |x|_2^2 \
&= (1-|x|_2+|x|_2)^2 \
&= 1
end{align}



which means $|Tx|_2 le 1$.



Also clearly all coordinates of $$Tx = (1-|x|_2, x_1, x_2, ldots)$$
are nonnegative since $x_n ge 0, forall n in mathbb{N}$ and $1-|x|_2 ge 0$.



Therefore $Tx in K$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    @mechanodroid...thank you so much but i have doubt with how to show $T$ is self map in question (1)
    $endgroup$
    – Inverse Problem
    yesterday










  • $begingroup$
    @InverseProblem Have a look.
    $endgroup$
    – mechanodroid
    yesterday










  • $begingroup$
    @mechanodroid......thank you so much ......for your help
    $endgroup$
    – Inverse Problem
    yesterday










  • $begingroup$
    @mechanodroid...can you give some hint this question please...math.stackexchange.com/questions/3159556/…
    $endgroup$
    – Inverse Problem
    yesterday












  • $begingroup$
    @InverseProblem I have added an answer, can you explain what exactly is $T$ in the definition of $T_n$?
    $endgroup$
    – mechanodroid
    yesterday





















2












$begingroup$

You're on the right track.



As you said - $||x||_2 =(sum ^infty_{n=1} |1-||x|||_2|^2)^frac{1}{2}$



There is only one possible way for this sum to converge - if and only if $||x||_2=1$. But in this case, we also get $||x||_2=0$ - a contradiction.



About (1) - let's try evaluating the required norm:



$||Tx-Ty||_2=||(1-||x||_2,x(1),x(2),...)-(1-||y||_2,y(1),y(2),...)||_2\=||(||y||_2-||x||_2,x(1)-y(1),x(2)-y(2),...)||_2\=(|||y||_2-||x||_2|^2+sum ^infty_{n=2} |x(n)-y(n)|^2)^frac{1}{2}\=(|||y||_2-||x||_2|^2-|x(1)-y(1)|^2+sum ^infty_{n=1} |x(n)-y(n)|^2)^frac{1}{2}\leq(||x-y||_2^2-|x(1)-y(1)|^2+||x-y||_2^2)^frac{1}{2}\=(2||x-y||_2^2-|x(1)-y(1)|^2)^frac{1}{2}\ leq sqrt2||x-y||_2$



(Every $leq$ sign is due to triangle inequality)






share|cite|improve this answer











$endgroup$













  • $begingroup$
    ..can you tell me how to prove self map
    $endgroup$
    – Inverse Problem
    yesterday










  • $begingroup$
    I'm not familiar with that term, what does it mean?
    $endgroup$
    – GSofer
    yesterday










  • $begingroup$
    it means that we have to prove $T$ map from $K$ to $K$
    $endgroup$
    – Inverse Problem
    yesterday



















1












$begingroup$

It seems to me one may not need the assumption $x(n)geq 0$. In fact, if $Tx=x$,
then $|Tx|^2=|x|^2$ which says $(1-|x|)^2+x(1)^2+x(2)^2...=x(1)^2+x(2)^2+...$,
so we see $|x|=1$. Then $x(1)=0$. Let $n$ be the first integer with $x(n)neq 0$,
there exists such $n$ since $|x|=1$.
So $x(n-1)=0$, but the $n$-th component in $Tx$ is $x(n-1)=0$, contradicts
$Tx=x$ and $x(n)neq 0$.



Part 1: $|Tx-Ty|^2=[(1-|x|)-(1-|y|)]^2+[x(1)-y(1)]^2+...=(|x|-|y|)^2+|x-y|^2leq |x-y|^2+|x-y|^2=2|x-y|^2$ .






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Ding....can you tell how to prove this is self map
    $endgroup$
    – Inverse Problem
    yesterday










  • $begingroup$
    From $|x|leq 1$, the condition $x(n)geq 0$ is preserved by $T$. Next, $|Tx|^2=(1-|x|)^2+|x|^2leq 1$, here one uses the elementary inequality $(1-a)^2+a^2leq 1$ when $0leq aleq 1$, which can be checked by finding the maximum of $(1-a)^2+a^2$ on $[0, 1]$.
    $endgroup$
    – Yu Ding
    yesterday












  • $begingroup$
    what is this mean when u want to prove a map is self map it means we have to prove that map itself to a set
    $endgroup$
    – Inverse Problem
    yesterday













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160256%2fa-question-about-fixed-points-and-non-expansive-map%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























3 Answers
3






active

oldest

votes








3 Answers
3






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

For $(2)$ you got that if $Tx = x$ then $$x = (1-|x|_2, 1-|x|_2, ldots)$$



so $$+infty > |x|_2^2 = sum_{n=1}^infty (1-|x|_2)^2$$
The only way this series converges is if $1-|x|_2 = 0$, or $|x|_2 = 1$, so $x = (1,1,1ldots )$. But then clearly $|x|_2 = +infty$ and not $1$ so this is a contradiction.






To show that $T$ is actually a map $K to K$, take $x in K$ and we claim that $Tx in K$ as well.

Since $|x|_2 le 1$ we have $1-|x|_2 ge 0$ so



begin{align}
|Tx|_2^2 &= (1-|x|_2)^2 + sum_{n=1}^infty |x_n|^2 \
&= (1-|x|_2)^2 + |x|_2^2 \
&le (1-|x|_2)^2 + 2(1-|x|_2)|x|_2 + |x|_2^2 \
&= (1-|x|_2+|x|_2)^2 \
&= 1
end{align}



which means $|Tx|_2 le 1$.



Also clearly all coordinates of $$Tx = (1-|x|_2, x_1, x_2, ldots)$$
are nonnegative since $x_n ge 0, forall n in mathbb{N}$ and $1-|x|_2 ge 0$.



Therefore $Tx in K$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    @mechanodroid...thank you so much but i have doubt with how to show $T$ is self map in question (1)
    $endgroup$
    – Inverse Problem
    yesterday










  • $begingroup$
    @InverseProblem Have a look.
    $endgroup$
    – mechanodroid
    yesterday










  • $begingroup$
    @mechanodroid......thank you so much ......for your help
    $endgroup$
    – Inverse Problem
    yesterday










  • $begingroup$
    @mechanodroid...can you give some hint this question please...math.stackexchange.com/questions/3159556/…
    $endgroup$
    – Inverse Problem
    yesterday












  • $begingroup$
    @InverseProblem I have added an answer, can you explain what exactly is $T$ in the definition of $T_n$?
    $endgroup$
    – mechanodroid
    yesterday


















2












$begingroup$

For $(2)$ you got that if $Tx = x$ then $$x = (1-|x|_2, 1-|x|_2, ldots)$$



so $$+infty > |x|_2^2 = sum_{n=1}^infty (1-|x|_2)^2$$
The only way this series converges is if $1-|x|_2 = 0$, or $|x|_2 = 1$, so $x = (1,1,1ldots )$. But then clearly $|x|_2 = +infty$ and not $1$ so this is a contradiction.






To show that $T$ is actually a map $K to K$, take $x in K$ and we claim that $Tx in K$ as well.

Since $|x|_2 le 1$ we have $1-|x|_2 ge 0$ so



begin{align}
|Tx|_2^2 &= (1-|x|_2)^2 + sum_{n=1}^infty |x_n|^2 \
&= (1-|x|_2)^2 + |x|_2^2 \
&le (1-|x|_2)^2 + 2(1-|x|_2)|x|_2 + |x|_2^2 \
&= (1-|x|_2+|x|_2)^2 \
&= 1
end{align}



which means $|Tx|_2 le 1$.



Also clearly all coordinates of $$Tx = (1-|x|_2, x_1, x_2, ldots)$$
are nonnegative since $x_n ge 0, forall n in mathbb{N}$ and $1-|x|_2 ge 0$.



Therefore $Tx in K$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    @mechanodroid...thank you so much but i have doubt with how to show $T$ is self map in question (1)
    $endgroup$
    – Inverse Problem
    yesterday










  • $begingroup$
    @InverseProblem Have a look.
    $endgroup$
    – mechanodroid
    yesterday










  • $begingroup$
    @mechanodroid......thank you so much ......for your help
    $endgroup$
    – Inverse Problem
    yesterday










  • $begingroup$
    @mechanodroid...can you give some hint this question please...math.stackexchange.com/questions/3159556/…
    $endgroup$
    – Inverse Problem
    yesterday












  • $begingroup$
    @InverseProblem I have added an answer, can you explain what exactly is $T$ in the definition of $T_n$?
    $endgroup$
    – mechanodroid
    yesterday
















2












2








2





$begingroup$

For $(2)$ you got that if $Tx = x$ then $$x = (1-|x|_2, 1-|x|_2, ldots)$$



so $$+infty > |x|_2^2 = sum_{n=1}^infty (1-|x|_2)^2$$
The only way this series converges is if $1-|x|_2 = 0$, or $|x|_2 = 1$, so $x = (1,1,1ldots )$. But then clearly $|x|_2 = +infty$ and not $1$ so this is a contradiction.






To show that $T$ is actually a map $K to K$, take $x in K$ and we claim that $Tx in K$ as well.

Since $|x|_2 le 1$ we have $1-|x|_2 ge 0$ so



begin{align}
|Tx|_2^2 &= (1-|x|_2)^2 + sum_{n=1}^infty |x_n|^2 \
&= (1-|x|_2)^2 + |x|_2^2 \
&le (1-|x|_2)^2 + 2(1-|x|_2)|x|_2 + |x|_2^2 \
&= (1-|x|_2+|x|_2)^2 \
&= 1
end{align}



which means $|Tx|_2 le 1$.



Also clearly all coordinates of $$Tx = (1-|x|_2, x_1, x_2, ldots)$$
are nonnegative since $x_n ge 0, forall n in mathbb{N}$ and $1-|x|_2 ge 0$.



Therefore $Tx in K$.






share|cite|improve this answer











$endgroup$



For $(2)$ you got that if $Tx = x$ then $$x = (1-|x|_2, 1-|x|_2, ldots)$$



so $$+infty > |x|_2^2 = sum_{n=1}^infty (1-|x|_2)^2$$
The only way this series converges is if $1-|x|_2 = 0$, or $|x|_2 = 1$, so $x = (1,1,1ldots )$. But then clearly $|x|_2 = +infty$ and not $1$ so this is a contradiction.






To show that $T$ is actually a map $K to K$, take $x in K$ and we claim that $Tx in K$ as well.

Since $|x|_2 le 1$ we have $1-|x|_2 ge 0$ so



begin{align}
|Tx|_2^2 &= (1-|x|_2)^2 + sum_{n=1}^infty |x_n|^2 \
&= (1-|x|_2)^2 + |x|_2^2 \
&le (1-|x|_2)^2 + 2(1-|x|_2)|x|_2 + |x|_2^2 \
&= (1-|x|_2+|x|_2)^2 \
&= 1
end{align}



which means $|Tx|_2 le 1$.



Also clearly all coordinates of $$Tx = (1-|x|_2, x_1, x_2, ldots)$$
are nonnegative since $x_n ge 0, forall n in mathbb{N}$ and $1-|x|_2 ge 0$.



Therefore $Tx in K$.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited yesterday

























answered yesterday









mechanodroidmechanodroid

29k62648




29k62648












  • $begingroup$
    @mechanodroid...thank you so much but i have doubt with how to show $T$ is self map in question (1)
    $endgroup$
    – Inverse Problem
    yesterday










  • $begingroup$
    @InverseProblem Have a look.
    $endgroup$
    – mechanodroid
    yesterday










  • $begingroup$
    @mechanodroid......thank you so much ......for your help
    $endgroup$
    – Inverse Problem
    yesterday










  • $begingroup$
    @mechanodroid...can you give some hint this question please...math.stackexchange.com/questions/3159556/…
    $endgroup$
    – Inverse Problem
    yesterday












  • $begingroup$
    @InverseProblem I have added an answer, can you explain what exactly is $T$ in the definition of $T_n$?
    $endgroup$
    – mechanodroid
    yesterday




















  • $begingroup$
    @mechanodroid...thank you so much but i have doubt with how to show $T$ is self map in question (1)
    $endgroup$
    – Inverse Problem
    yesterday










  • $begingroup$
    @InverseProblem Have a look.
    $endgroup$
    – mechanodroid
    yesterday










  • $begingroup$
    @mechanodroid......thank you so much ......for your help
    $endgroup$
    – Inverse Problem
    yesterday










  • $begingroup$
    @mechanodroid...can you give some hint this question please...math.stackexchange.com/questions/3159556/…
    $endgroup$
    – Inverse Problem
    yesterday












  • $begingroup$
    @InverseProblem I have added an answer, can you explain what exactly is $T$ in the definition of $T_n$?
    $endgroup$
    – mechanodroid
    yesterday


















$begingroup$
@mechanodroid...thank you so much but i have doubt with how to show $T$ is self map in question (1)
$endgroup$
– Inverse Problem
yesterday




$begingroup$
@mechanodroid...thank you so much but i have doubt with how to show $T$ is self map in question (1)
$endgroup$
– Inverse Problem
yesterday












$begingroup$
@InverseProblem Have a look.
$endgroup$
– mechanodroid
yesterday




$begingroup$
@InverseProblem Have a look.
$endgroup$
– mechanodroid
yesterday












$begingroup$
@mechanodroid......thank you so much ......for your help
$endgroup$
– Inverse Problem
yesterday




$begingroup$
@mechanodroid......thank you so much ......for your help
$endgroup$
– Inverse Problem
yesterday












$begingroup$
@mechanodroid...can you give some hint this question please...math.stackexchange.com/questions/3159556/…
$endgroup$
– Inverse Problem
yesterday






$begingroup$
@mechanodroid...can you give some hint this question please...math.stackexchange.com/questions/3159556/…
$endgroup$
– Inverse Problem
yesterday














$begingroup$
@InverseProblem I have added an answer, can you explain what exactly is $T$ in the definition of $T_n$?
$endgroup$
– mechanodroid
yesterday






$begingroup$
@InverseProblem I have added an answer, can you explain what exactly is $T$ in the definition of $T_n$?
$endgroup$
– mechanodroid
yesterday













2












$begingroup$

You're on the right track.



As you said - $||x||_2 =(sum ^infty_{n=1} |1-||x|||_2|^2)^frac{1}{2}$



There is only one possible way for this sum to converge - if and only if $||x||_2=1$. But in this case, we also get $||x||_2=0$ - a contradiction.



About (1) - let's try evaluating the required norm:



$||Tx-Ty||_2=||(1-||x||_2,x(1),x(2),...)-(1-||y||_2,y(1),y(2),...)||_2\=||(||y||_2-||x||_2,x(1)-y(1),x(2)-y(2),...)||_2\=(|||y||_2-||x||_2|^2+sum ^infty_{n=2} |x(n)-y(n)|^2)^frac{1}{2}\=(|||y||_2-||x||_2|^2-|x(1)-y(1)|^2+sum ^infty_{n=1} |x(n)-y(n)|^2)^frac{1}{2}\leq(||x-y||_2^2-|x(1)-y(1)|^2+||x-y||_2^2)^frac{1}{2}\=(2||x-y||_2^2-|x(1)-y(1)|^2)^frac{1}{2}\ leq sqrt2||x-y||_2$



(Every $leq$ sign is due to triangle inequality)






share|cite|improve this answer











$endgroup$













  • $begingroup$
    ..can you tell me how to prove self map
    $endgroup$
    – Inverse Problem
    yesterday










  • $begingroup$
    I'm not familiar with that term, what does it mean?
    $endgroup$
    – GSofer
    yesterday










  • $begingroup$
    it means that we have to prove $T$ map from $K$ to $K$
    $endgroup$
    – Inverse Problem
    yesterday
















2












$begingroup$

You're on the right track.



As you said - $||x||_2 =(sum ^infty_{n=1} |1-||x|||_2|^2)^frac{1}{2}$



There is only one possible way for this sum to converge - if and only if $||x||_2=1$. But in this case, we also get $||x||_2=0$ - a contradiction.



About (1) - let's try evaluating the required norm:



$||Tx-Ty||_2=||(1-||x||_2,x(1),x(2),...)-(1-||y||_2,y(1),y(2),...)||_2\=||(||y||_2-||x||_2,x(1)-y(1),x(2)-y(2),...)||_2\=(|||y||_2-||x||_2|^2+sum ^infty_{n=2} |x(n)-y(n)|^2)^frac{1}{2}\=(|||y||_2-||x||_2|^2-|x(1)-y(1)|^2+sum ^infty_{n=1} |x(n)-y(n)|^2)^frac{1}{2}\leq(||x-y||_2^2-|x(1)-y(1)|^2+||x-y||_2^2)^frac{1}{2}\=(2||x-y||_2^2-|x(1)-y(1)|^2)^frac{1}{2}\ leq sqrt2||x-y||_2$



(Every $leq$ sign is due to triangle inequality)






share|cite|improve this answer











$endgroup$













  • $begingroup$
    ..can you tell me how to prove self map
    $endgroup$
    – Inverse Problem
    yesterday










  • $begingroup$
    I'm not familiar with that term, what does it mean?
    $endgroup$
    – GSofer
    yesterday










  • $begingroup$
    it means that we have to prove $T$ map from $K$ to $K$
    $endgroup$
    – Inverse Problem
    yesterday














2












2








2





$begingroup$

You're on the right track.



As you said - $||x||_2 =(sum ^infty_{n=1} |1-||x|||_2|^2)^frac{1}{2}$



There is only one possible way for this sum to converge - if and only if $||x||_2=1$. But in this case, we also get $||x||_2=0$ - a contradiction.



About (1) - let's try evaluating the required norm:



$||Tx-Ty||_2=||(1-||x||_2,x(1),x(2),...)-(1-||y||_2,y(1),y(2),...)||_2\=||(||y||_2-||x||_2,x(1)-y(1),x(2)-y(2),...)||_2\=(|||y||_2-||x||_2|^2+sum ^infty_{n=2} |x(n)-y(n)|^2)^frac{1}{2}\=(|||y||_2-||x||_2|^2-|x(1)-y(1)|^2+sum ^infty_{n=1} |x(n)-y(n)|^2)^frac{1}{2}\leq(||x-y||_2^2-|x(1)-y(1)|^2+||x-y||_2^2)^frac{1}{2}\=(2||x-y||_2^2-|x(1)-y(1)|^2)^frac{1}{2}\ leq sqrt2||x-y||_2$



(Every $leq$ sign is due to triangle inequality)






share|cite|improve this answer











$endgroup$



You're on the right track.



As you said - $||x||_2 =(sum ^infty_{n=1} |1-||x|||_2|^2)^frac{1}{2}$



There is only one possible way for this sum to converge - if and only if $||x||_2=1$. But in this case, we also get $||x||_2=0$ - a contradiction.



About (1) - let's try evaluating the required norm:



$||Tx-Ty||_2=||(1-||x||_2,x(1),x(2),...)-(1-||y||_2,y(1),y(2),...)||_2\=||(||y||_2-||x||_2,x(1)-y(1),x(2)-y(2),...)||_2\=(|||y||_2-||x||_2|^2+sum ^infty_{n=2} |x(n)-y(n)|^2)^frac{1}{2}\=(|||y||_2-||x||_2|^2-|x(1)-y(1)|^2+sum ^infty_{n=1} |x(n)-y(n)|^2)^frac{1}{2}\leq(||x-y||_2^2-|x(1)-y(1)|^2+||x-y||_2^2)^frac{1}{2}\=(2||x-y||_2^2-|x(1)-y(1)|^2)^frac{1}{2}\ leq sqrt2||x-y||_2$



(Every $leq$ sign is due to triangle inequality)







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited yesterday

























answered yesterday









GSoferGSofer

781313




781313












  • $begingroup$
    ..can you tell me how to prove self map
    $endgroup$
    – Inverse Problem
    yesterday










  • $begingroup$
    I'm not familiar with that term, what does it mean?
    $endgroup$
    – GSofer
    yesterday










  • $begingroup$
    it means that we have to prove $T$ map from $K$ to $K$
    $endgroup$
    – Inverse Problem
    yesterday


















  • $begingroup$
    ..can you tell me how to prove self map
    $endgroup$
    – Inverse Problem
    yesterday










  • $begingroup$
    I'm not familiar with that term, what does it mean?
    $endgroup$
    – GSofer
    yesterday










  • $begingroup$
    it means that we have to prove $T$ map from $K$ to $K$
    $endgroup$
    – Inverse Problem
    yesterday
















$begingroup$
..can you tell me how to prove self map
$endgroup$
– Inverse Problem
yesterday




$begingroup$
..can you tell me how to prove self map
$endgroup$
– Inverse Problem
yesterday












$begingroup$
I'm not familiar with that term, what does it mean?
$endgroup$
– GSofer
yesterday




$begingroup$
I'm not familiar with that term, what does it mean?
$endgroup$
– GSofer
yesterday












$begingroup$
it means that we have to prove $T$ map from $K$ to $K$
$endgroup$
– Inverse Problem
yesterday




$begingroup$
it means that we have to prove $T$ map from $K$ to $K$
$endgroup$
– Inverse Problem
yesterday











1












$begingroup$

It seems to me one may not need the assumption $x(n)geq 0$. In fact, if $Tx=x$,
then $|Tx|^2=|x|^2$ which says $(1-|x|)^2+x(1)^2+x(2)^2...=x(1)^2+x(2)^2+...$,
so we see $|x|=1$. Then $x(1)=0$. Let $n$ be the first integer with $x(n)neq 0$,
there exists such $n$ since $|x|=1$.
So $x(n-1)=0$, but the $n$-th component in $Tx$ is $x(n-1)=0$, contradicts
$Tx=x$ and $x(n)neq 0$.



Part 1: $|Tx-Ty|^2=[(1-|x|)-(1-|y|)]^2+[x(1)-y(1)]^2+...=(|x|-|y|)^2+|x-y|^2leq |x-y|^2+|x-y|^2=2|x-y|^2$ .






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Ding....can you tell how to prove this is self map
    $endgroup$
    – Inverse Problem
    yesterday










  • $begingroup$
    From $|x|leq 1$, the condition $x(n)geq 0$ is preserved by $T$. Next, $|Tx|^2=(1-|x|)^2+|x|^2leq 1$, here one uses the elementary inequality $(1-a)^2+a^2leq 1$ when $0leq aleq 1$, which can be checked by finding the maximum of $(1-a)^2+a^2$ on $[0, 1]$.
    $endgroup$
    – Yu Ding
    yesterday












  • $begingroup$
    what is this mean when u want to prove a map is self map it means we have to prove that map itself to a set
    $endgroup$
    – Inverse Problem
    yesterday


















1












$begingroup$

It seems to me one may not need the assumption $x(n)geq 0$. In fact, if $Tx=x$,
then $|Tx|^2=|x|^2$ which says $(1-|x|)^2+x(1)^2+x(2)^2...=x(1)^2+x(2)^2+...$,
so we see $|x|=1$. Then $x(1)=0$. Let $n$ be the first integer with $x(n)neq 0$,
there exists such $n$ since $|x|=1$.
So $x(n-1)=0$, but the $n$-th component in $Tx$ is $x(n-1)=0$, contradicts
$Tx=x$ and $x(n)neq 0$.



Part 1: $|Tx-Ty|^2=[(1-|x|)-(1-|y|)]^2+[x(1)-y(1)]^2+...=(|x|-|y|)^2+|x-y|^2leq |x-y|^2+|x-y|^2=2|x-y|^2$ .






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Ding....can you tell how to prove this is self map
    $endgroup$
    – Inverse Problem
    yesterday










  • $begingroup$
    From $|x|leq 1$, the condition $x(n)geq 0$ is preserved by $T$. Next, $|Tx|^2=(1-|x|)^2+|x|^2leq 1$, here one uses the elementary inequality $(1-a)^2+a^2leq 1$ when $0leq aleq 1$, which can be checked by finding the maximum of $(1-a)^2+a^2$ on $[0, 1]$.
    $endgroup$
    – Yu Ding
    yesterday












  • $begingroup$
    what is this mean when u want to prove a map is self map it means we have to prove that map itself to a set
    $endgroup$
    – Inverse Problem
    yesterday
















1












1








1





$begingroup$

It seems to me one may not need the assumption $x(n)geq 0$. In fact, if $Tx=x$,
then $|Tx|^2=|x|^2$ which says $(1-|x|)^2+x(1)^2+x(2)^2...=x(1)^2+x(2)^2+...$,
so we see $|x|=1$. Then $x(1)=0$. Let $n$ be the first integer with $x(n)neq 0$,
there exists such $n$ since $|x|=1$.
So $x(n-1)=0$, but the $n$-th component in $Tx$ is $x(n-1)=0$, contradicts
$Tx=x$ and $x(n)neq 0$.



Part 1: $|Tx-Ty|^2=[(1-|x|)-(1-|y|)]^2+[x(1)-y(1)]^2+...=(|x|-|y|)^2+|x-y|^2leq |x-y|^2+|x-y|^2=2|x-y|^2$ .






share|cite|improve this answer









$endgroup$



It seems to me one may not need the assumption $x(n)geq 0$. In fact, if $Tx=x$,
then $|Tx|^2=|x|^2$ which says $(1-|x|)^2+x(1)^2+x(2)^2...=x(1)^2+x(2)^2+...$,
so we see $|x|=1$. Then $x(1)=0$. Let $n$ be the first integer with $x(n)neq 0$,
there exists such $n$ since $|x|=1$.
So $x(n-1)=0$, but the $n$-th component in $Tx$ is $x(n-1)=0$, contradicts
$Tx=x$ and $x(n)neq 0$.



Part 1: $|Tx-Ty|^2=[(1-|x|)-(1-|y|)]^2+[x(1)-y(1)]^2+...=(|x|-|y|)^2+|x-y|^2leq |x-y|^2+|x-y|^2=2|x-y|^2$ .







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered yesterday









Yu DingYu Ding

5186




5186












  • $begingroup$
    Ding....can you tell how to prove this is self map
    $endgroup$
    – Inverse Problem
    yesterday










  • $begingroup$
    From $|x|leq 1$, the condition $x(n)geq 0$ is preserved by $T$. Next, $|Tx|^2=(1-|x|)^2+|x|^2leq 1$, here one uses the elementary inequality $(1-a)^2+a^2leq 1$ when $0leq aleq 1$, which can be checked by finding the maximum of $(1-a)^2+a^2$ on $[0, 1]$.
    $endgroup$
    – Yu Ding
    yesterday












  • $begingroup$
    what is this mean when u want to prove a map is self map it means we have to prove that map itself to a set
    $endgroup$
    – Inverse Problem
    yesterday




















  • $begingroup$
    Ding....can you tell how to prove this is self map
    $endgroup$
    – Inverse Problem
    yesterday










  • $begingroup$
    From $|x|leq 1$, the condition $x(n)geq 0$ is preserved by $T$. Next, $|Tx|^2=(1-|x|)^2+|x|^2leq 1$, here one uses the elementary inequality $(1-a)^2+a^2leq 1$ when $0leq aleq 1$, which can be checked by finding the maximum of $(1-a)^2+a^2$ on $[0, 1]$.
    $endgroup$
    – Yu Ding
    yesterday












  • $begingroup$
    what is this mean when u want to prove a map is self map it means we have to prove that map itself to a set
    $endgroup$
    – Inverse Problem
    yesterday


















$begingroup$
Ding....can you tell how to prove this is self map
$endgroup$
– Inverse Problem
yesterday




$begingroup$
Ding....can you tell how to prove this is self map
$endgroup$
– Inverse Problem
yesterday












$begingroup$
From $|x|leq 1$, the condition $x(n)geq 0$ is preserved by $T$. Next, $|Tx|^2=(1-|x|)^2+|x|^2leq 1$, here one uses the elementary inequality $(1-a)^2+a^2leq 1$ when $0leq aleq 1$, which can be checked by finding the maximum of $(1-a)^2+a^2$ on $[0, 1]$.
$endgroup$
– Yu Ding
yesterday






$begingroup$
From $|x|leq 1$, the condition $x(n)geq 0$ is preserved by $T$. Next, $|Tx|^2=(1-|x|)^2+|x|^2leq 1$, here one uses the elementary inequality $(1-a)^2+a^2leq 1$ when $0leq aleq 1$, which can be checked by finding the maximum of $(1-a)^2+a^2$ on $[0, 1]$.
$endgroup$
– Yu Ding
yesterday














$begingroup$
what is this mean when u want to prove a map is self map it means we have to prove that map itself to a set
$endgroup$
– Inverse Problem
yesterday






$begingroup$
what is this mean when u want to prove a map is self map it means we have to prove that map itself to a set
$endgroup$
– Inverse Problem
yesterday




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160256%2fa-question-about-fixed-points-and-non-expansive-map%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How did Captain America manage to do this?

迪纳利

南乌拉尔铁路局