Eigenvalues of two symmetric $4times 4$ matrices: why is one negative of the other?












3












$begingroup$


Consider the following symmetric matrix:



$$
M_0 =
begin{pmatrix}
0 & 1 & 2 & 0 \
1 & 0 & 4 & 3 \
2 & 4 & 0 & 1 \
0 & 3 & 1 & 0
end{pmatrix}
$$



and a very similar matrix:



$$
M_1 =
begin{pmatrix}
0 & 1 & 2 & 0 \
1 & 0 & -4 & 3 \
2 & -4 & 0 & 1 \
0 & 3 & 1 & 0
end{pmatrix}
$$



To my surprise, the eigenspectrum of $M_0$ and $(-M_1)$ are the same! Why would this be the case?



I also tried playing around with the values a little; for example, if the center block is $begin{pmatrix}1 & pm 4 \ pm 4 & 1end{pmatrix}$ instead, then they do not share the same eigenvalues.





Context: I was considering the Hermitian matrix of this form ($M_2$ below) and noted that this has the same property as the matrix $M_0$ from above. Thus, presumably, it has nothing to do with the fact that the middle block is complex.



$$
M_2 =
begin{pmatrix}
0 & 1 & 2 & 0 \
1 & 0 & e^{ix} & 3 \
2 & e^{-ix} & 0 & 1 \
0 & 3 & 1 & 0
end{pmatrix}
$$



ps. I will accept any answer which explains the phenomenon between the real matrices. I think that would give a hint as to why $M_2$ / Hermitian matrices have the same property.



Thanks.










share|cite|improve this question











$endgroup$












  • $begingroup$
    It's because of all the conveniently placed zeroes.
    $endgroup$
    – M. Vinay
    2 days ago










  • $begingroup$
    @M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
    $endgroup$
    – Troy
    2 days ago






  • 1




    $begingroup$
    In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
    $endgroup$
    – M. Vinay
    2 days ago






  • 2




    $begingroup$
    In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
    $endgroup$
    – leonbloy
    2 days ago










  • $begingroup$
    @leonbloy that certainly narrows down the search for me, thanks for the input!
    $endgroup$
    – Troy
    2 days ago
















3












$begingroup$


Consider the following symmetric matrix:



$$
M_0 =
begin{pmatrix}
0 & 1 & 2 & 0 \
1 & 0 & 4 & 3 \
2 & 4 & 0 & 1 \
0 & 3 & 1 & 0
end{pmatrix}
$$



and a very similar matrix:



$$
M_1 =
begin{pmatrix}
0 & 1 & 2 & 0 \
1 & 0 & -4 & 3 \
2 & -4 & 0 & 1 \
0 & 3 & 1 & 0
end{pmatrix}
$$



To my surprise, the eigenspectrum of $M_0$ and $(-M_1)$ are the same! Why would this be the case?



I also tried playing around with the values a little; for example, if the center block is $begin{pmatrix}1 & pm 4 \ pm 4 & 1end{pmatrix}$ instead, then they do not share the same eigenvalues.





Context: I was considering the Hermitian matrix of this form ($M_2$ below) and noted that this has the same property as the matrix $M_0$ from above. Thus, presumably, it has nothing to do with the fact that the middle block is complex.



$$
M_2 =
begin{pmatrix}
0 & 1 & 2 & 0 \
1 & 0 & e^{ix} & 3 \
2 & e^{-ix} & 0 & 1 \
0 & 3 & 1 & 0
end{pmatrix}
$$



ps. I will accept any answer which explains the phenomenon between the real matrices. I think that would give a hint as to why $M_2$ / Hermitian matrices have the same property.



Thanks.










share|cite|improve this question











$endgroup$












  • $begingroup$
    It's because of all the conveniently placed zeroes.
    $endgroup$
    – M. Vinay
    2 days ago










  • $begingroup$
    @M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
    $endgroup$
    – Troy
    2 days ago






  • 1




    $begingroup$
    In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
    $endgroup$
    – M. Vinay
    2 days ago






  • 2




    $begingroup$
    In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
    $endgroup$
    – leonbloy
    2 days ago










  • $begingroup$
    @leonbloy that certainly narrows down the search for me, thanks for the input!
    $endgroup$
    – Troy
    2 days ago














3












3








3


1



$begingroup$


Consider the following symmetric matrix:



$$
M_0 =
begin{pmatrix}
0 & 1 & 2 & 0 \
1 & 0 & 4 & 3 \
2 & 4 & 0 & 1 \
0 & 3 & 1 & 0
end{pmatrix}
$$



and a very similar matrix:



$$
M_1 =
begin{pmatrix}
0 & 1 & 2 & 0 \
1 & 0 & -4 & 3 \
2 & -4 & 0 & 1 \
0 & 3 & 1 & 0
end{pmatrix}
$$



To my surprise, the eigenspectrum of $M_0$ and $(-M_1)$ are the same! Why would this be the case?



I also tried playing around with the values a little; for example, if the center block is $begin{pmatrix}1 & pm 4 \ pm 4 & 1end{pmatrix}$ instead, then they do not share the same eigenvalues.





Context: I was considering the Hermitian matrix of this form ($M_2$ below) and noted that this has the same property as the matrix $M_0$ from above. Thus, presumably, it has nothing to do with the fact that the middle block is complex.



$$
M_2 =
begin{pmatrix}
0 & 1 & 2 & 0 \
1 & 0 & e^{ix} & 3 \
2 & e^{-ix} & 0 & 1 \
0 & 3 & 1 & 0
end{pmatrix}
$$



ps. I will accept any answer which explains the phenomenon between the real matrices. I think that would give a hint as to why $M_2$ / Hermitian matrices have the same property.



Thanks.










share|cite|improve this question











$endgroup$




Consider the following symmetric matrix:



$$
M_0 =
begin{pmatrix}
0 & 1 & 2 & 0 \
1 & 0 & 4 & 3 \
2 & 4 & 0 & 1 \
0 & 3 & 1 & 0
end{pmatrix}
$$



and a very similar matrix:



$$
M_1 =
begin{pmatrix}
0 & 1 & 2 & 0 \
1 & 0 & -4 & 3 \
2 & -4 & 0 & 1 \
0 & 3 & 1 & 0
end{pmatrix}
$$



To my surprise, the eigenspectrum of $M_0$ and $(-M_1)$ are the same! Why would this be the case?



I also tried playing around with the values a little; for example, if the center block is $begin{pmatrix}1 & pm 4 \ pm 4 & 1end{pmatrix}$ instead, then they do not share the same eigenvalues.





Context: I was considering the Hermitian matrix of this form ($M_2$ below) and noted that this has the same property as the matrix $M_0$ from above. Thus, presumably, it has nothing to do with the fact that the middle block is complex.



$$
M_2 =
begin{pmatrix}
0 & 1 & 2 & 0 \
1 & 0 & e^{ix} & 3 \
2 & e^{-ix} & 0 & 1 \
0 & 3 & 1 & 0
end{pmatrix}
$$



ps. I will accept any answer which explains the phenomenon between the real matrices. I think that would give a hint as to why $M_2$ / Hermitian matrices have the same property.



Thanks.







linear-algebra matrices eigenvalues-eigenvectors symmetric-matrices






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 days ago









M. Vinay

7,33322136




7,33322136










asked Apr 7 at 1:43









TroyTroy

4301519




4301519












  • $begingroup$
    It's because of all the conveniently placed zeroes.
    $endgroup$
    – M. Vinay
    2 days ago










  • $begingroup$
    @M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
    $endgroup$
    – Troy
    2 days ago






  • 1




    $begingroup$
    In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
    $endgroup$
    – M. Vinay
    2 days ago






  • 2




    $begingroup$
    In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
    $endgroup$
    – leonbloy
    2 days ago










  • $begingroup$
    @leonbloy that certainly narrows down the search for me, thanks for the input!
    $endgroup$
    – Troy
    2 days ago


















  • $begingroup$
    It's because of all the conveniently placed zeroes.
    $endgroup$
    – M. Vinay
    2 days ago










  • $begingroup$
    @M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
    $endgroup$
    – Troy
    2 days ago






  • 1




    $begingroup$
    In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
    $endgroup$
    – M. Vinay
    2 days ago






  • 2




    $begingroup$
    In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
    $endgroup$
    – leonbloy
    2 days ago










  • $begingroup$
    @leonbloy that certainly narrows down the search for me, thanks for the input!
    $endgroup$
    – Troy
    2 days ago
















$begingroup$
It's because of all the conveniently placed zeroes.
$endgroup$
– M. Vinay
2 days ago




$begingroup$
It's because of all the conveniently placed zeroes.
$endgroup$
– M. Vinay
2 days ago












$begingroup$
@M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
$endgroup$
– Troy
2 days ago




$begingroup$
@M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
$endgroup$
– Troy
2 days ago




1




1




$begingroup$
In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
$endgroup$
– M. Vinay
2 days ago




$begingroup$
In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
$endgroup$
– M. Vinay
2 days ago




2




2




$begingroup$
In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
$endgroup$
– leonbloy
2 days ago




$begingroup$
In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
$endgroup$
– leonbloy
2 days ago












$begingroup$
@leonbloy that certainly narrows down the search for me, thanks for the input!
$endgroup$
– Troy
2 days ago




$begingroup$
@leonbloy that certainly narrows down the search for me, thanks for the input!
$endgroup$
– Troy
2 days ago










3 Answers
3






active

oldest

votes


















6












$begingroup$

$$-M_1=D^{-1}M_0D$$
where $D=D^{-1}$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrix{a_{11}&a_{12}&a_{13}&a_{14}\
a_{21}&a_{22}&a_{23}&a_{24}\
a_{31}&a_{32}&a_{33}&a_{34}\
a_{41}&a_{42}&a_{43}&a_{44}}$$

and
$$-pmatrix{-a_{11}&a_{12}&a_{13}&-a_{14}\
a_{21}&-a_{22}&-a_{23}&a_{24}\
a_{31}&-a_{32}&-a_{33}&a_{34}\
-a_{41}&a_{42}&a_{43}&-a_{44}}$$

are conjugate, for precisely the same reason.






share|cite|improve this answer











$endgroup$









  • 2




    $begingroup$
    Of course, signature matrix. This is the answer.
    $endgroup$
    – M. Vinay
    2 days ago






  • 1




    $begingroup$
    okay, this is amazing.. (there's a small typo on the last line of the matrix, I can't edit since it's <6 characters long)
    $endgroup$
    – Troy
    2 days ago





















2












$begingroup$

This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.



Let $$M_1 = begin{bmatrix}0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0end{bmatrix}, quad M_2 = begin{bmatrix}0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0end{bmatrix}$$



Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = begin{bmatrix}x_1 & x_2 & x_3 & x_4end{bmatrix}^T$.
Then we can show that
$begin{bmatrix}x_1 & -x_2 & -x_3 & x_4end{bmatrix}^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.



For,
begin{align*}
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
end{align*}

And the cases of the third and fourth rows are obviously similar.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    oh this is promising. let me mull on this a little before I accept. thanks!
    $endgroup$
    – Troy
    2 days ago










  • $begingroup$
    The would imply that the property has no obvious generalization for larger sizes, no?
    $endgroup$
    – leonbloy
    2 days ago










  • $begingroup$
    @leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
    $endgroup$
    – M. Vinay
    2 days ago



















1












$begingroup$

I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.



Consider the matrix
$$
M_a =
left[begin{array}{rrrr}
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
end{array}right]
$$

The characteristic polynomials of $M_a$ and $M_{-a}$ are
begin{align*}
chi_{M_a}(t)
&= t^{4} - left(a^{2} + 15right) t^{2} - 10 , a t + 25 \
chi_{M_{-a}}(t)
&= t^{4} - left(a^{2} + 15right) t^{2} + 10 , a t + 25
end{align*}

Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
begin{align*}
0
&= chi_{M_a}(t) \
&= {lambda}^{4} - {left(a^{2} + 15right)} {lambda}^{2} - 10 , a {lambda} + 25\
&= (-lambda)^{4} - {left(a^{2} + 15right)} (-lambda)^{2} + 10 , a (-lambda) + 25 \
&= chi_{M_{-a}}(-lambda)
end{align*}

This proves that $M_{a}$ and $M_{-a}$ have eigenvalues related by negation.



Now, suppose that $M$ instead takes the form
$$
M_{a+bi}=left[begin{array}{rrrr}
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
end{array}right]
$$

In this case, the characteristic polynomials of $M_{a+bi}$ and $M_{-a+bi}$ are
begin{align*}
chi_{M_{a+bi}}(t)
&= t^{4} + left(-a^{2} - b^{2} - 15right) t^{2} - 10 , a t + 25 \
chi_{M_{-a+bi}}(t)
&= t^{4} + left(-a^{2} - b^{2} - 15right) t^{2} + 10 , a t + 25
end{align*}

A similiar argument then shows that $M_{a+bi}$ and $M_{-a+bi}$ have eigenvalues related by negation.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
    $endgroup$
    – Troy
    2 days ago










  • $begingroup$
    This does not explain if the property depends on having those non-zero elements.
    $endgroup$
    – leonbloy
    2 days ago










  • $begingroup$
    @leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
    $endgroup$
    – Brian Fitzpatrick
    2 days ago












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177640%2feigenvalues-of-two-symmetric-4-times-4-matrices-why-is-one-negative-of-the-ot%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























3 Answers
3






active

oldest

votes








3 Answers
3






active

oldest

votes









active

oldest

votes






active

oldest

votes









6












$begingroup$

$$-M_1=D^{-1}M_0D$$
where $D=D^{-1}$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrix{a_{11}&a_{12}&a_{13}&a_{14}\
a_{21}&a_{22}&a_{23}&a_{24}\
a_{31}&a_{32}&a_{33}&a_{34}\
a_{41}&a_{42}&a_{43}&a_{44}}$$

and
$$-pmatrix{-a_{11}&a_{12}&a_{13}&-a_{14}\
a_{21}&-a_{22}&-a_{23}&a_{24}\
a_{31}&-a_{32}&-a_{33}&a_{34}\
-a_{41}&a_{42}&a_{43}&-a_{44}}$$

are conjugate, for precisely the same reason.






share|cite|improve this answer











$endgroup$









  • 2




    $begingroup$
    Of course, signature matrix. This is the answer.
    $endgroup$
    – M. Vinay
    2 days ago






  • 1




    $begingroup$
    okay, this is amazing.. (there's a small typo on the last line of the matrix, I can't edit since it's <6 characters long)
    $endgroup$
    – Troy
    2 days ago


















6












$begingroup$

$$-M_1=D^{-1}M_0D$$
where $D=D^{-1}$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrix{a_{11}&a_{12}&a_{13}&a_{14}\
a_{21}&a_{22}&a_{23}&a_{24}\
a_{31}&a_{32}&a_{33}&a_{34}\
a_{41}&a_{42}&a_{43}&a_{44}}$$

and
$$-pmatrix{-a_{11}&a_{12}&a_{13}&-a_{14}\
a_{21}&-a_{22}&-a_{23}&a_{24}\
a_{31}&-a_{32}&-a_{33}&a_{34}\
-a_{41}&a_{42}&a_{43}&-a_{44}}$$

are conjugate, for precisely the same reason.






share|cite|improve this answer











$endgroup$









  • 2




    $begingroup$
    Of course, signature matrix. This is the answer.
    $endgroup$
    – M. Vinay
    2 days ago






  • 1




    $begingroup$
    okay, this is amazing.. (there's a small typo on the last line of the matrix, I can't edit since it's <6 characters long)
    $endgroup$
    – Troy
    2 days ago
















6












6








6





$begingroup$

$$-M_1=D^{-1}M_0D$$
where $D=D^{-1}$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrix{a_{11}&a_{12}&a_{13}&a_{14}\
a_{21}&a_{22}&a_{23}&a_{24}\
a_{31}&a_{32}&a_{33}&a_{34}\
a_{41}&a_{42}&a_{43}&a_{44}}$$

and
$$-pmatrix{-a_{11}&a_{12}&a_{13}&-a_{14}\
a_{21}&-a_{22}&-a_{23}&a_{24}\
a_{31}&-a_{32}&-a_{33}&a_{34}\
-a_{41}&a_{42}&a_{43}&-a_{44}}$$

are conjugate, for precisely the same reason.






share|cite|improve this answer











$endgroup$



$$-M_1=D^{-1}M_0D$$
where $D=D^{-1}$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrix{a_{11}&a_{12}&a_{13}&a_{14}\
a_{21}&a_{22}&a_{23}&a_{24}\
a_{31}&a_{32}&a_{33}&a_{34}\
a_{41}&a_{42}&a_{43}&a_{44}}$$

and
$$-pmatrix{-a_{11}&a_{12}&a_{13}&-a_{14}\
a_{21}&-a_{22}&-a_{23}&a_{24}\
a_{31}&-a_{32}&-a_{33}&a_{34}\
-a_{41}&a_{42}&a_{43}&-a_{44}}$$

are conjugate, for precisely the same reason.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 2 days ago

























answered 2 days ago









Lord Shark the UnknownLord Shark the Unknown

108k1162136




108k1162136








  • 2




    $begingroup$
    Of course, signature matrix. This is the answer.
    $endgroup$
    – M. Vinay
    2 days ago






  • 1




    $begingroup$
    okay, this is amazing.. (there's a small typo on the last line of the matrix, I can't edit since it's <6 characters long)
    $endgroup$
    – Troy
    2 days ago
















  • 2




    $begingroup$
    Of course, signature matrix. This is the answer.
    $endgroup$
    – M. Vinay
    2 days ago






  • 1




    $begingroup$
    okay, this is amazing.. (there's a small typo on the last line of the matrix, I can't edit since it's <6 characters long)
    $endgroup$
    – Troy
    2 days ago










2




2




$begingroup$
Of course, signature matrix. This is the answer.
$endgroup$
– M. Vinay
2 days ago




$begingroup$
Of course, signature matrix. This is the answer.
$endgroup$
– M. Vinay
2 days ago




1




1




$begingroup$
okay, this is amazing.. (there's a small typo on the last line of the matrix, I can't edit since it's <6 characters long)
$endgroup$
– Troy
2 days ago






$begingroup$
okay, this is amazing.. (there's a small typo on the last line of the matrix, I can't edit since it's <6 characters long)
$endgroup$
– Troy
2 days ago













2












$begingroup$

This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.



Let $$M_1 = begin{bmatrix}0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0end{bmatrix}, quad M_2 = begin{bmatrix}0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0end{bmatrix}$$



Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = begin{bmatrix}x_1 & x_2 & x_3 & x_4end{bmatrix}^T$.
Then we can show that
$begin{bmatrix}x_1 & -x_2 & -x_3 & x_4end{bmatrix}^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.



For,
begin{align*}
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
end{align*}

And the cases of the third and fourth rows are obviously similar.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    oh this is promising. let me mull on this a little before I accept. thanks!
    $endgroup$
    – Troy
    2 days ago










  • $begingroup$
    The would imply that the property has no obvious generalization for larger sizes, no?
    $endgroup$
    – leonbloy
    2 days ago










  • $begingroup$
    @leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
    $endgroup$
    – M. Vinay
    2 days ago
















2












$begingroup$

This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.



Let $$M_1 = begin{bmatrix}0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0end{bmatrix}, quad M_2 = begin{bmatrix}0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0end{bmatrix}$$



Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = begin{bmatrix}x_1 & x_2 & x_3 & x_4end{bmatrix}^T$.
Then we can show that
$begin{bmatrix}x_1 & -x_2 & -x_3 & x_4end{bmatrix}^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.



For,
begin{align*}
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
end{align*}

And the cases of the third and fourth rows are obviously similar.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    oh this is promising. let me mull on this a little before I accept. thanks!
    $endgroup$
    – Troy
    2 days ago










  • $begingroup$
    The would imply that the property has no obvious generalization for larger sizes, no?
    $endgroup$
    – leonbloy
    2 days ago










  • $begingroup$
    @leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
    $endgroup$
    – M. Vinay
    2 days ago














2












2








2





$begingroup$

This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.



Let $$M_1 = begin{bmatrix}0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0end{bmatrix}, quad M_2 = begin{bmatrix}0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0end{bmatrix}$$



Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = begin{bmatrix}x_1 & x_2 & x_3 & x_4end{bmatrix}^T$.
Then we can show that
$begin{bmatrix}x_1 & -x_2 & -x_3 & x_4end{bmatrix}^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.



For,
begin{align*}
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
end{align*}

And the cases of the third and fourth rows are obviously similar.






share|cite|improve this answer











$endgroup$



This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.



Let $$M_1 = begin{bmatrix}0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0end{bmatrix}, quad M_2 = begin{bmatrix}0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0end{bmatrix}$$



Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = begin{bmatrix}x_1 & x_2 & x_3 & x_4end{bmatrix}^T$.
Then we can show that
$begin{bmatrix}x_1 & -x_2 & -x_3 & x_4end{bmatrix}^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.



For,
begin{align*}
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
end{align*}

And the cases of the third and fourth rows are obviously similar.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 2 days ago

























answered 2 days ago









M. VinayM. Vinay

7,33322136




7,33322136












  • $begingroup$
    oh this is promising. let me mull on this a little before I accept. thanks!
    $endgroup$
    – Troy
    2 days ago










  • $begingroup$
    The would imply that the property has no obvious generalization for larger sizes, no?
    $endgroup$
    – leonbloy
    2 days ago










  • $begingroup$
    @leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
    $endgroup$
    – M. Vinay
    2 days ago


















  • $begingroup$
    oh this is promising. let me mull on this a little before I accept. thanks!
    $endgroup$
    – Troy
    2 days ago










  • $begingroup$
    The would imply that the property has no obvious generalization for larger sizes, no?
    $endgroup$
    – leonbloy
    2 days ago










  • $begingroup$
    @leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
    $endgroup$
    – M. Vinay
    2 days ago
















$begingroup$
oh this is promising. let me mull on this a little before I accept. thanks!
$endgroup$
– Troy
2 days ago




$begingroup$
oh this is promising. let me mull on this a little before I accept. thanks!
$endgroup$
– Troy
2 days ago












$begingroup$
The would imply that the property has no obvious generalization for larger sizes, no?
$endgroup$
– leonbloy
2 days ago




$begingroup$
The would imply that the property has no obvious generalization for larger sizes, no?
$endgroup$
– leonbloy
2 days ago












$begingroup$
@leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
$endgroup$
– M. Vinay
2 days ago




$begingroup$
@leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
$endgroup$
– M. Vinay
2 days ago











1












$begingroup$

I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.



Consider the matrix
$$
M_a =
left[begin{array}{rrrr}
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
end{array}right]
$$

The characteristic polynomials of $M_a$ and $M_{-a}$ are
begin{align*}
chi_{M_a}(t)
&= t^{4} - left(a^{2} + 15right) t^{2} - 10 , a t + 25 \
chi_{M_{-a}}(t)
&= t^{4} - left(a^{2} + 15right) t^{2} + 10 , a t + 25
end{align*}

Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
begin{align*}
0
&= chi_{M_a}(t) \
&= {lambda}^{4} - {left(a^{2} + 15right)} {lambda}^{2} - 10 , a {lambda} + 25\
&= (-lambda)^{4} - {left(a^{2} + 15right)} (-lambda)^{2} + 10 , a (-lambda) + 25 \
&= chi_{M_{-a}}(-lambda)
end{align*}

This proves that $M_{a}$ and $M_{-a}$ have eigenvalues related by negation.



Now, suppose that $M$ instead takes the form
$$
M_{a+bi}=left[begin{array}{rrrr}
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
end{array}right]
$$

In this case, the characteristic polynomials of $M_{a+bi}$ and $M_{-a+bi}$ are
begin{align*}
chi_{M_{a+bi}}(t)
&= t^{4} + left(-a^{2} - b^{2} - 15right) t^{2} - 10 , a t + 25 \
chi_{M_{-a+bi}}(t)
&= t^{4} + left(-a^{2} - b^{2} - 15right) t^{2} + 10 , a t + 25
end{align*}

A similiar argument then shows that $M_{a+bi}$ and $M_{-a+bi}$ have eigenvalues related by negation.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
    $endgroup$
    – Troy
    2 days ago










  • $begingroup$
    This does not explain if the property depends on having those non-zero elements.
    $endgroup$
    – leonbloy
    2 days ago










  • $begingroup$
    @leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
    $endgroup$
    – Brian Fitzpatrick
    2 days ago
















1












$begingroup$

I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.



Consider the matrix
$$
M_a =
left[begin{array}{rrrr}
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
end{array}right]
$$

The characteristic polynomials of $M_a$ and $M_{-a}$ are
begin{align*}
chi_{M_a}(t)
&= t^{4} - left(a^{2} + 15right) t^{2} - 10 , a t + 25 \
chi_{M_{-a}}(t)
&= t^{4} - left(a^{2} + 15right) t^{2} + 10 , a t + 25
end{align*}

Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
begin{align*}
0
&= chi_{M_a}(t) \
&= {lambda}^{4} - {left(a^{2} + 15right)} {lambda}^{2} - 10 , a {lambda} + 25\
&= (-lambda)^{4} - {left(a^{2} + 15right)} (-lambda)^{2} + 10 , a (-lambda) + 25 \
&= chi_{M_{-a}}(-lambda)
end{align*}

This proves that $M_{a}$ and $M_{-a}$ have eigenvalues related by negation.



Now, suppose that $M$ instead takes the form
$$
M_{a+bi}=left[begin{array}{rrrr}
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
end{array}right]
$$

In this case, the characteristic polynomials of $M_{a+bi}$ and $M_{-a+bi}$ are
begin{align*}
chi_{M_{a+bi}}(t)
&= t^{4} + left(-a^{2} - b^{2} - 15right) t^{2} - 10 , a t + 25 \
chi_{M_{-a+bi}}(t)
&= t^{4} + left(-a^{2} - b^{2} - 15right) t^{2} + 10 , a t + 25
end{align*}

A similiar argument then shows that $M_{a+bi}$ and $M_{-a+bi}$ have eigenvalues related by negation.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
    $endgroup$
    – Troy
    2 days ago










  • $begingroup$
    This does not explain if the property depends on having those non-zero elements.
    $endgroup$
    – leonbloy
    2 days ago










  • $begingroup$
    @leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
    $endgroup$
    – Brian Fitzpatrick
    2 days ago














1












1








1





$begingroup$

I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.



Consider the matrix
$$
M_a =
left[begin{array}{rrrr}
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
end{array}right]
$$

The characteristic polynomials of $M_a$ and $M_{-a}$ are
begin{align*}
chi_{M_a}(t)
&= t^{4} - left(a^{2} + 15right) t^{2} - 10 , a t + 25 \
chi_{M_{-a}}(t)
&= t^{4} - left(a^{2} + 15right) t^{2} + 10 , a t + 25
end{align*}

Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
begin{align*}
0
&= chi_{M_a}(t) \
&= {lambda}^{4} - {left(a^{2} + 15right)} {lambda}^{2} - 10 , a {lambda} + 25\
&= (-lambda)^{4} - {left(a^{2} + 15right)} (-lambda)^{2} + 10 , a (-lambda) + 25 \
&= chi_{M_{-a}}(-lambda)
end{align*}

This proves that $M_{a}$ and $M_{-a}$ have eigenvalues related by negation.



Now, suppose that $M$ instead takes the form
$$
M_{a+bi}=left[begin{array}{rrrr}
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
end{array}right]
$$

In this case, the characteristic polynomials of $M_{a+bi}$ and $M_{-a+bi}$ are
begin{align*}
chi_{M_{a+bi}}(t)
&= t^{4} + left(-a^{2} - b^{2} - 15right) t^{2} - 10 , a t + 25 \
chi_{M_{-a+bi}}(t)
&= t^{4} + left(-a^{2} - b^{2} - 15right) t^{2} + 10 , a t + 25
end{align*}

A similiar argument then shows that $M_{a+bi}$ and $M_{-a+bi}$ have eigenvalues related by negation.






share|cite|improve this answer











$endgroup$



I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.



Consider the matrix
$$
M_a =
left[begin{array}{rrrr}
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
end{array}right]
$$

The characteristic polynomials of $M_a$ and $M_{-a}$ are
begin{align*}
chi_{M_a}(t)
&= t^{4} - left(a^{2} + 15right) t^{2} - 10 , a t + 25 \
chi_{M_{-a}}(t)
&= t^{4} - left(a^{2} + 15right) t^{2} + 10 , a t + 25
end{align*}

Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
begin{align*}
0
&= chi_{M_a}(t) \
&= {lambda}^{4} - {left(a^{2} + 15right)} {lambda}^{2} - 10 , a {lambda} + 25\
&= (-lambda)^{4} - {left(a^{2} + 15right)} (-lambda)^{2} + 10 , a (-lambda) + 25 \
&= chi_{M_{-a}}(-lambda)
end{align*}

This proves that $M_{a}$ and $M_{-a}$ have eigenvalues related by negation.



Now, suppose that $M$ instead takes the form
$$
M_{a+bi}=left[begin{array}{rrrr}
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
end{array}right]
$$

In this case, the characteristic polynomials of $M_{a+bi}$ and $M_{-a+bi}$ are
begin{align*}
chi_{M_{a+bi}}(t)
&= t^{4} + left(-a^{2} - b^{2} - 15right) t^{2} - 10 , a t + 25 \
chi_{M_{-a+bi}}(t)
&= t^{4} + left(-a^{2} - b^{2} - 15right) t^{2} + 10 , a t + 25
end{align*}

A similiar argument then shows that $M_{a+bi}$ and $M_{-a+bi}$ have eigenvalues related by negation.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 2 days ago

























answered 2 days ago









Brian FitzpatrickBrian Fitzpatrick

21.9k42960




21.9k42960












  • $begingroup$
    thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
    $endgroup$
    – Troy
    2 days ago










  • $begingroup$
    This does not explain if the property depends on having those non-zero elements.
    $endgroup$
    – leonbloy
    2 days ago










  • $begingroup$
    @leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
    $endgroup$
    – Brian Fitzpatrick
    2 days ago


















  • $begingroup$
    thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
    $endgroup$
    – Troy
    2 days ago










  • $begingroup$
    This does not explain if the property depends on having those non-zero elements.
    $endgroup$
    – leonbloy
    2 days ago










  • $begingroup$
    @leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
    $endgroup$
    – Brian Fitzpatrick
    2 days ago
















$begingroup$
thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
$endgroup$
– Troy
2 days ago




$begingroup$
thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
$endgroup$
– Troy
2 days ago












$begingroup$
This does not explain if the property depends on having those non-zero elements.
$endgroup$
– leonbloy
2 days ago




$begingroup$
This does not explain if the property depends on having those non-zero elements.
$endgroup$
– leonbloy
2 days ago












$begingroup$
@leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
$endgroup$
– Brian Fitzpatrick
2 days ago




$begingroup$
@leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
$endgroup$
– Brian Fitzpatrick
2 days ago


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177640%2feigenvalues-of-two-symmetric-4-times-4-matrices-why-is-one-negative-of-the-ot%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How did Captain America manage to do this?

迪纳利

南乌拉尔铁路局