Limit for $e$ and $frac{1}{e}$












7












$begingroup$


My question concerns the derivation of this: $$e^r = lim_{n rightarrow infty} left(1 + frac{r}{n}right)^n ...(1).$$
One of the definitions of $e$ is as follows:
$$e = lim_{n rightarrow infty} left(1+frac{1}{n}right)^n.$$



Then, textbooks usually derive equation (1) in the following manner:



begin{align}
lim_{n rightarrow infty} left(1 + frac{r}{n}right)^n &= lim_{u rightarrow infty} left(1 + frac{1}{u}right)^{ru} text{where} u = frac{n}{r}\
&= lim_{u rightarrow infty} left(left(1 + frac{1}{u}right)^uright)^r \
&= left(lim_{u rightarrow infty} left(1 + frac{1}{u}right)^uright)^r \
&= e^r.
end{align}



This argument is fine if $r > 0$ since $u rightarrow infty$ as $n rightarrow infty$, but when $r < 0$, $u rightarrow - infty$ as $n rightarrow infty$.



How can I extend the proof for (1) where $r$ is any real number?



When $r = 0$, $lim_{n rightarrow infty} (1+0/n)^n = 1$ (Although, I should be careful about evaluating limits that look like $``1^{infty}"$.)



Here's my attempt so far for the case where $r < 0$:
begin{align}
lim_{n rightarrow infty} left(1 + frac{r}{n}right)^n &= lim_{u rightarrow infty} left(1 - frac{1}{u}right)^{-ru} text{where} u = -frac{n}{r} \
&= left(lim_{u rightarrow infty} left(1 - frac{1}{u}right)^uright)^{-r}.
end{align}



My question boils down to how to show the following limit from the definition above for $e$ $$lim_{n rightarrow infty} left(1 - frac{1}{n}right)^n = frac{1}{e}.$$
Thanks.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Isn't the last limit $limlimits_{n rightarrow infty} left (1 - frac 1 n right )^n = frac {1} {e}$?
    $endgroup$
    – Dbchatto67
    yesterday












  • $begingroup$
    The substitution is still valid for $rlt0$ because the bracket contains a number $lt1$.
    $endgroup$
    – Peter Foreman
    yesterday






  • 1




    $begingroup$
    Side note: no need to be careful for $r=0$. You have $(1+0/n)^n=1$ for all $n$.
    $endgroup$
    – Dirk
    yesterday
















7












$begingroup$


My question concerns the derivation of this: $$e^r = lim_{n rightarrow infty} left(1 + frac{r}{n}right)^n ...(1).$$
One of the definitions of $e$ is as follows:
$$e = lim_{n rightarrow infty} left(1+frac{1}{n}right)^n.$$



Then, textbooks usually derive equation (1) in the following manner:



begin{align}
lim_{n rightarrow infty} left(1 + frac{r}{n}right)^n &= lim_{u rightarrow infty} left(1 + frac{1}{u}right)^{ru} text{where} u = frac{n}{r}\
&= lim_{u rightarrow infty} left(left(1 + frac{1}{u}right)^uright)^r \
&= left(lim_{u rightarrow infty} left(1 + frac{1}{u}right)^uright)^r \
&= e^r.
end{align}



This argument is fine if $r > 0$ since $u rightarrow infty$ as $n rightarrow infty$, but when $r < 0$, $u rightarrow - infty$ as $n rightarrow infty$.



How can I extend the proof for (1) where $r$ is any real number?



When $r = 0$, $lim_{n rightarrow infty} (1+0/n)^n = 1$ (Although, I should be careful about evaluating limits that look like $``1^{infty}"$.)



Here's my attempt so far for the case where $r < 0$:
begin{align}
lim_{n rightarrow infty} left(1 + frac{r}{n}right)^n &= lim_{u rightarrow infty} left(1 - frac{1}{u}right)^{-ru} text{where} u = -frac{n}{r} \
&= left(lim_{u rightarrow infty} left(1 - frac{1}{u}right)^uright)^{-r}.
end{align}



My question boils down to how to show the following limit from the definition above for $e$ $$lim_{n rightarrow infty} left(1 - frac{1}{n}right)^n = frac{1}{e}.$$
Thanks.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Isn't the last limit $limlimits_{n rightarrow infty} left (1 - frac 1 n right )^n = frac {1} {e}$?
    $endgroup$
    – Dbchatto67
    yesterday












  • $begingroup$
    The substitution is still valid for $rlt0$ because the bracket contains a number $lt1$.
    $endgroup$
    – Peter Foreman
    yesterday






  • 1




    $begingroup$
    Side note: no need to be careful for $r=0$. You have $(1+0/n)^n=1$ for all $n$.
    $endgroup$
    – Dirk
    yesterday














7












7








7


3



$begingroup$


My question concerns the derivation of this: $$e^r = lim_{n rightarrow infty} left(1 + frac{r}{n}right)^n ...(1).$$
One of the definitions of $e$ is as follows:
$$e = lim_{n rightarrow infty} left(1+frac{1}{n}right)^n.$$



Then, textbooks usually derive equation (1) in the following manner:



begin{align}
lim_{n rightarrow infty} left(1 + frac{r}{n}right)^n &= lim_{u rightarrow infty} left(1 + frac{1}{u}right)^{ru} text{where} u = frac{n}{r}\
&= lim_{u rightarrow infty} left(left(1 + frac{1}{u}right)^uright)^r \
&= left(lim_{u rightarrow infty} left(1 + frac{1}{u}right)^uright)^r \
&= e^r.
end{align}



This argument is fine if $r > 0$ since $u rightarrow infty$ as $n rightarrow infty$, but when $r < 0$, $u rightarrow - infty$ as $n rightarrow infty$.



How can I extend the proof for (1) where $r$ is any real number?



When $r = 0$, $lim_{n rightarrow infty} (1+0/n)^n = 1$ (Although, I should be careful about evaluating limits that look like $``1^{infty}"$.)



Here's my attempt so far for the case where $r < 0$:
begin{align}
lim_{n rightarrow infty} left(1 + frac{r}{n}right)^n &= lim_{u rightarrow infty} left(1 - frac{1}{u}right)^{-ru} text{where} u = -frac{n}{r} \
&= left(lim_{u rightarrow infty} left(1 - frac{1}{u}right)^uright)^{-r}.
end{align}



My question boils down to how to show the following limit from the definition above for $e$ $$lim_{n rightarrow infty} left(1 - frac{1}{n}right)^n = frac{1}{e}.$$
Thanks.










share|cite|improve this question











$endgroup$




My question concerns the derivation of this: $$e^r = lim_{n rightarrow infty} left(1 + frac{r}{n}right)^n ...(1).$$
One of the definitions of $e$ is as follows:
$$e = lim_{n rightarrow infty} left(1+frac{1}{n}right)^n.$$



Then, textbooks usually derive equation (1) in the following manner:



begin{align}
lim_{n rightarrow infty} left(1 + frac{r}{n}right)^n &= lim_{u rightarrow infty} left(1 + frac{1}{u}right)^{ru} text{where} u = frac{n}{r}\
&= lim_{u rightarrow infty} left(left(1 + frac{1}{u}right)^uright)^r \
&= left(lim_{u rightarrow infty} left(1 + frac{1}{u}right)^uright)^r \
&= e^r.
end{align}



This argument is fine if $r > 0$ since $u rightarrow infty$ as $n rightarrow infty$, but when $r < 0$, $u rightarrow - infty$ as $n rightarrow infty$.



How can I extend the proof for (1) where $r$ is any real number?



When $r = 0$, $lim_{n rightarrow infty} (1+0/n)^n = 1$ (Although, I should be careful about evaluating limits that look like $``1^{infty}"$.)



Here's my attempt so far for the case where $r < 0$:
begin{align}
lim_{n rightarrow infty} left(1 + frac{r}{n}right)^n &= lim_{u rightarrow infty} left(1 - frac{1}{u}right)^{-ru} text{where} u = -frac{n}{r} \
&= left(lim_{u rightarrow infty} left(1 - frac{1}{u}right)^uright)^{-r}.
end{align}



My question boils down to how to show the following limit from the definition above for $e$ $$lim_{n rightarrow infty} left(1 - frac{1}{n}right)^n = frac{1}{e}.$$
Thanks.







calculus limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday









YuiTo Cheng

2,43841037




2,43841037










asked yesterday









VishnuramVishnuram

534




534








  • 1




    $begingroup$
    Isn't the last limit $limlimits_{n rightarrow infty} left (1 - frac 1 n right )^n = frac {1} {e}$?
    $endgroup$
    – Dbchatto67
    yesterday












  • $begingroup$
    The substitution is still valid for $rlt0$ because the bracket contains a number $lt1$.
    $endgroup$
    – Peter Foreman
    yesterday






  • 1




    $begingroup$
    Side note: no need to be careful for $r=0$. You have $(1+0/n)^n=1$ for all $n$.
    $endgroup$
    – Dirk
    yesterday














  • 1




    $begingroup$
    Isn't the last limit $limlimits_{n rightarrow infty} left (1 - frac 1 n right )^n = frac {1} {e}$?
    $endgroup$
    – Dbchatto67
    yesterday












  • $begingroup$
    The substitution is still valid for $rlt0$ because the bracket contains a number $lt1$.
    $endgroup$
    – Peter Foreman
    yesterday






  • 1




    $begingroup$
    Side note: no need to be careful for $r=0$. You have $(1+0/n)^n=1$ for all $n$.
    $endgroup$
    – Dirk
    yesterday








1




1




$begingroup$
Isn't the last limit $limlimits_{n rightarrow infty} left (1 - frac 1 n right )^n = frac {1} {e}$?
$endgroup$
– Dbchatto67
yesterday






$begingroup$
Isn't the last limit $limlimits_{n rightarrow infty} left (1 - frac 1 n right )^n = frac {1} {e}$?
$endgroup$
– Dbchatto67
yesterday














$begingroup$
The substitution is still valid for $rlt0$ because the bracket contains a number $lt1$.
$endgroup$
– Peter Foreman
yesterday




$begingroup$
The substitution is still valid for $rlt0$ because the bracket contains a number $lt1$.
$endgroup$
– Peter Foreman
yesterday




1




1




$begingroup$
Side note: no need to be careful for $r=0$. You have $(1+0/n)^n=1$ for all $n$.
$endgroup$
– Dirk
yesterday




$begingroup$
Side note: no need to be careful for $r=0$. You have $(1+0/n)^n=1$ for all $n$.
$endgroup$
– Dirk
yesterday










5 Answers
5






active

oldest

votes


















14












$begingroup$

begin{align*}lim_{ntoinfty}left( 1 - frac{1}{n} right)^n &= lim_{ntoinfty}left(frac{n-1}{n}right)^n = lim_{ntoinfty}left(frac{1}{frac{n}{n-1}}right)^n = lim_{ntoinfty}frac{1}{left(frac{n}{n-1}right)^n} \ &= lim_{ntoinfty}frac{1}{left(1 + frac{1}{n-1}right)^n} = lim_{ntoinfty} left(frac{1}{left(1 + frac{1}{n-1}right)^{n-1}} cdot frac{1}{1 + frac{1}{n-1}} right) \
&= lim_{ntoinfty} frac{1}{left(1 + frac{1}{n-1}right)^{n-1}} = lim_{ntoinfty} frac{1}{left(1 + frac{1}{n}right)^{n}} = frac{1}{e} \
&= e^{-1}
end{align*}






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Lee Mosher.Very nice!
    $endgroup$
    – Peter Szilas
    23 hours ago



















5












$begingroup$

Consider proving the reciprocal, i.e.
$$
lim left(1 - frac 1nright)^{-n} = mathrm e.
$$

The expression inside could be rewritten as
$$
left(1 - frac 1n right)^{-n} = left(frac {n-1}nright)^{-n} = left(frac n{n-1}right)^n = left(1 + frac 1{n-1}right)^n = left(1 + frac 1{n-1}right)^{n-1} cdot left(1 + frac 1{n-1}right).
$$

Now use the definition of $mathrm e$:
$$
lim_n left(1 + frac 1{n-1}right)^{n-1} = mathrm e.
$$

Since
$$
lim_n left(1 + frac 1{n-1}right) = 1,
$$

we conclude that
$$
lim_n left(1 - frac 1n right)^{-n} = lim_n left(1 + frac 1{n-1}right)^{n-1} cdot lim_n left(1 + frac 1{n-1}right) = mathrm e cdot 1 = mathrm e.
$$

by the law of arithmetic operations of limits.



Therefore the original limit is $1/mathrm e$.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Let $P= left (1 - frac 1 n right )^n.$ Then $ln P = frac {ln left (1 - frac 1 n right )} {frac 1 n}. (*)$



    Now as $n rightarrow infty$ then $(*)$ is a $frac 0 0$ form. Applying L'Hospital we have $$begin{align*} limlimits_{n rightarrow infty} ln P & = limlimits_{n rightarrow infty} frac {frac {1} {left (1 - frac 1 n right )} cdot frac {1} {n^2}} {-frac {1} {n^2}}. \ & = - limlimits_{n rightarrow infty} frac {1} {left (1 - frac 1 n right )}. \ & = -1. end{align*}$$



    This shows that $$limlimits_{n rightarrow infty} P =limlimits_{n rightarrow infty} left (1 - frac 1 n right )^n = frac 1 e.$$






    share|cite|improve this answer











    $endgroup$





















      -1












      $begingroup$

      The easiest way, working for all $r in mathbb{R}$, is to write
      $$left( 1+ frac{r}{n}right)^n =exp left( n ln left( 1+ frac{r}{n}right)right) = exp left( n left( frac{r}{n} + oleft( frac{1}{n}right) right)right) = exp left( r + oleft( 1right) right)$$



      So it converges to $exp(r)$.






      share|cite|improve this answer









      $endgroup$





















        -1












        $begingroup$

        $f(x):=log x;$



        $f'(1)= lim_{n rightarrow infty}dfrac{f(1-1/n)-f(1)}{-(1/n)}$;



        Hence



        $lim_{n rightarrow infty} (nlog(1-1/n)-log 1)=$



        $lim_{n rightarrow infty} (-dfrac{log (1-1/n)-log 1}{-(1/n)})=- log '(1)=-1$



        Then



        $lim_{n rightarrow infty} exp n(log (1-1/n))=$



        $exp (lim_{n rightarrow infty} nlog (1-1/n))=$



        $exp (-1)$.



        Used: Continuity of $exp$.






        share|cite|improve this answer











        $endgroup$














          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3187576%2flimit-for-e-and-frac1e%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          5 Answers
          5






          active

          oldest

          votes








          5 Answers
          5






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          14












          $begingroup$

          begin{align*}lim_{ntoinfty}left( 1 - frac{1}{n} right)^n &= lim_{ntoinfty}left(frac{n-1}{n}right)^n = lim_{ntoinfty}left(frac{1}{frac{n}{n-1}}right)^n = lim_{ntoinfty}frac{1}{left(frac{n}{n-1}right)^n} \ &= lim_{ntoinfty}frac{1}{left(1 + frac{1}{n-1}right)^n} = lim_{ntoinfty} left(frac{1}{left(1 + frac{1}{n-1}right)^{n-1}} cdot frac{1}{1 + frac{1}{n-1}} right) \
          &= lim_{ntoinfty} frac{1}{left(1 + frac{1}{n-1}right)^{n-1}} = lim_{ntoinfty} frac{1}{left(1 + frac{1}{n}right)^{n}} = frac{1}{e} \
          &= e^{-1}
          end{align*}






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Lee Mosher.Very nice!
            $endgroup$
            – Peter Szilas
            23 hours ago
















          14












          $begingroup$

          begin{align*}lim_{ntoinfty}left( 1 - frac{1}{n} right)^n &= lim_{ntoinfty}left(frac{n-1}{n}right)^n = lim_{ntoinfty}left(frac{1}{frac{n}{n-1}}right)^n = lim_{ntoinfty}frac{1}{left(frac{n}{n-1}right)^n} \ &= lim_{ntoinfty}frac{1}{left(1 + frac{1}{n-1}right)^n} = lim_{ntoinfty} left(frac{1}{left(1 + frac{1}{n-1}right)^{n-1}} cdot frac{1}{1 + frac{1}{n-1}} right) \
          &= lim_{ntoinfty} frac{1}{left(1 + frac{1}{n-1}right)^{n-1}} = lim_{ntoinfty} frac{1}{left(1 + frac{1}{n}right)^{n}} = frac{1}{e} \
          &= e^{-1}
          end{align*}






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Lee Mosher.Very nice!
            $endgroup$
            – Peter Szilas
            23 hours ago














          14












          14








          14





          $begingroup$

          begin{align*}lim_{ntoinfty}left( 1 - frac{1}{n} right)^n &= lim_{ntoinfty}left(frac{n-1}{n}right)^n = lim_{ntoinfty}left(frac{1}{frac{n}{n-1}}right)^n = lim_{ntoinfty}frac{1}{left(frac{n}{n-1}right)^n} \ &= lim_{ntoinfty}frac{1}{left(1 + frac{1}{n-1}right)^n} = lim_{ntoinfty} left(frac{1}{left(1 + frac{1}{n-1}right)^{n-1}} cdot frac{1}{1 + frac{1}{n-1}} right) \
          &= lim_{ntoinfty} frac{1}{left(1 + frac{1}{n-1}right)^{n-1}} = lim_{ntoinfty} frac{1}{left(1 + frac{1}{n}right)^{n}} = frac{1}{e} \
          &= e^{-1}
          end{align*}






          share|cite|improve this answer









          $endgroup$



          begin{align*}lim_{ntoinfty}left( 1 - frac{1}{n} right)^n &= lim_{ntoinfty}left(frac{n-1}{n}right)^n = lim_{ntoinfty}left(frac{1}{frac{n}{n-1}}right)^n = lim_{ntoinfty}frac{1}{left(frac{n}{n-1}right)^n} \ &= lim_{ntoinfty}frac{1}{left(1 + frac{1}{n-1}right)^n} = lim_{ntoinfty} left(frac{1}{left(1 + frac{1}{n-1}right)^{n-1}} cdot frac{1}{1 + frac{1}{n-1}} right) \
          &= lim_{ntoinfty} frac{1}{left(1 + frac{1}{n-1}right)^{n-1}} = lim_{ntoinfty} frac{1}{left(1 + frac{1}{n}right)^{n}} = frac{1}{e} \
          &= e^{-1}
          end{align*}







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered yesterday









          Lee MosherLee Mosher

          52.4k33891




          52.4k33891












          • $begingroup$
            Lee Mosher.Very nice!
            $endgroup$
            – Peter Szilas
            23 hours ago


















          • $begingroup$
            Lee Mosher.Very nice!
            $endgroup$
            – Peter Szilas
            23 hours ago
















          $begingroup$
          Lee Mosher.Very nice!
          $endgroup$
          – Peter Szilas
          23 hours ago




          $begingroup$
          Lee Mosher.Very nice!
          $endgroup$
          – Peter Szilas
          23 hours ago











          5












          $begingroup$

          Consider proving the reciprocal, i.e.
          $$
          lim left(1 - frac 1nright)^{-n} = mathrm e.
          $$

          The expression inside could be rewritten as
          $$
          left(1 - frac 1n right)^{-n} = left(frac {n-1}nright)^{-n} = left(frac n{n-1}right)^n = left(1 + frac 1{n-1}right)^n = left(1 + frac 1{n-1}right)^{n-1} cdot left(1 + frac 1{n-1}right).
          $$

          Now use the definition of $mathrm e$:
          $$
          lim_n left(1 + frac 1{n-1}right)^{n-1} = mathrm e.
          $$

          Since
          $$
          lim_n left(1 + frac 1{n-1}right) = 1,
          $$

          we conclude that
          $$
          lim_n left(1 - frac 1n right)^{-n} = lim_n left(1 + frac 1{n-1}right)^{n-1} cdot lim_n left(1 + frac 1{n-1}right) = mathrm e cdot 1 = mathrm e.
          $$

          by the law of arithmetic operations of limits.



          Therefore the original limit is $1/mathrm e$.






          share|cite|improve this answer









          $endgroup$


















            5












            $begingroup$

            Consider proving the reciprocal, i.e.
            $$
            lim left(1 - frac 1nright)^{-n} = mathrm e.
            $$

            The expression inside could be rewritten as
            $$
            left(1 - frac 1n right)^{-n} = left(frac {n-1}nright)^{-n} = left(frac n{n-1}right)^n = left(1 + frac 1{n-1}right)^n = left(1 + frac 1{n-1}right)^{n-1} cdot left(1 + frac 1{n-1}right).
            $$

            Now use the definition of $mathrm e$:
            $$
            lim_n left(1 + frac 1{n-1}right)^{n-1} = mathrm e.
            $$

            Since
            $$
            lim_n left(1 + frac 1{n-1}right) = 1,
            $$

            we conclude that
            $$
            lim_n left(1 - frac 1n right)^{-n} = lim_n left(1 + frac 1{n-1}right)^{n-1} cdot lim_n left(1 + frac 1{n-1}right) = mathrm e cdot 1 = mathrm e.
            $$

            by the law of arithmetic operations of limits.



            Therefore the original limit is $1/mathrm e$.






            share|cite|improve this answer









            $endgroup$
















              5












              5








              5





              $begingroup$

              Consider proving the reciprocal, i.e.
              $$
              lim left(1 - frac 1nright)^{-n} = mathrm e.
              $$

              The expression inside could be rewritten as
              $$
              left(1 - frac 1n right)^{-n} = left(frac {n-1}nright)^{-n} = left(frac n{n-1}right)^n = left(1 + frac 1{n-1}right)^n = left(1 + frac 1{n-1}right)^{n-1} cdot left(1 + frac 1{n-1}right).
              $$

              Now use the definition of $mathrm e$:
              $$
              lim_n left(1 + frac 1{n-1}right)^{n-1} = mathrm e.
              $$

              Since
              $$
              lim_n left(1 + frac 1{n-1}right) = 1,
              $$

              we conclude that
              $$
              lim_n left(1 - frac 1n right)^{-n} = lim_n left(1 + frac 1{n-1}right)^{n-1} cdot lim_n left(1 + frac 1{n-1}right) = mathrm e cdot 1 = mathrm e.
              $$

              by the law of arithmetic operations of limits.



              Therefore the original limit is $1/mathrm e$.






              share|cite|improve this answer









              $endgroup$



              Consider proving the reciprocal, i.e.
              $$
              lim left(1 - frac 1nright)^{-n} = mathrm e.
              $$

              The expression inside could be rewritten as
              $$
              left(1 - frac 1n right)^{-n} = left(frac {n-1}nright)^{-n} = left(frac n{n-1}right)^n = left(1 + frac 1{n-1}right)^n = left(1 + frac 1{n-1}right)^{n-1} cdot left(1 + frac 1{n-1}right).
              $$

              Now use the definition of $mathrm e$:
              $$
              lim_n left(1 + frac 1{n-1}right)^{n-1} = mathrm e.
              $$

              Since
              $$
              lim_n left(1 + frac 1{n-1}right) = 1,
              $$

              we conclude that
              $$
              lim_n left(1 - frac 1n right)^{-n} = lim_n left(1 + frac 1{n-1}right)^{n-1} cdot lim_n left(1 + frac 1{n-1}right) = mathrm e cdot 1 = mathrm e.
              $$

              by the law of arithmetic operations of limits.



              Therefore the original limit is $1/mathrm e$.







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered yesterday









              xbhxbh

              6,3701522




              6,3701522























                  1












                  $begingroup$

                  Let $P= left (1 - frac 1 n right )^n.$ Then $ln P = frac {ln left (1 - frac 1 n right )} {frac 1 n}. (*)$



                  Now as $n rightarrow infty$ then $(*)$ is a $frac 0 0$ form. Applying L'Hospital we have $$begin{align*} limlimits_{n rightarrow infty} ln P & = limlimits_{n rightarrow infty} frac {frac {1} {left (1 - frac 1 n right )} cdot frac {1} {n^2}} {-frac {1} {n^2}}. \ & = - limlimits_{n rightarrow infty} frac {1} {left (1 - frac 1 n right )}. \ & = -1. end{align*}$$



                  This shows that $$limlimits_{n rightarrow infty} P =limlimits_{n rightarrow infty} left (1 - frac 1 n right )^n = frac 1 e.$$






                  share|cite|improve this answer











                  $endgroup$


















                    1












                    $begingroup$

                    Let $P= left (1 - frac 1 n right )^n.$ Then $ln P = frac {ln left (1 - frac 1 n right )} {frac 1 n}. (*)$



                    Now as $n rightarrow infty$ then $(*)$ is a $frac 0 0$ form. Applying L'Hospital we have $$begin{align*} limlimits_{n rightarrow infty} ln P & = limlimits_{n rightarrow infty} frac {frac {1} {left (1 - frac 1 n right )} cdot frac {1} {n^2}} {-frac {1} {n^2}}. \ & = - limlimits_{n rightarrow infty} frac {1} {left (1 - frac 1 n right )}. \ & = -1. end{align*}$$



                    This shows that $$limlimits_{n rightarrow infty} P =limlimits_{n rightarrow infty} left (1 - frac 1 n right )^n = frac 1 e.$$






                    share|cite|improve this answer











                    $endgroup$
















                      1












                      1








                      1





                      $begingroup$

                      Let $P= left (1 - frac 1 n right )^n.$ Then $ln P = frac {ln left (1 - frac 1 n right )} {frac 1 n}. (*)$



                      Now as $n rightarrow infty$ then $(*)$ is a $frac 0 0$ form. Applying L'Hospital we have $$begin{align*} limlimits_{n rightarrow infty} ln P & = limlimits_{n rightarrow infty} frac {frac {1} {left (1 - frac 1 n right )} cdot frac {1} {n^2}} {-frac {1} {n^2}}. \ & = - limlimits_{n rightarrow infty} frac {1} {left (1 - frac 1 n right )}. \ & = -1. end{align*}$$



                      This shows that $$limlimits_{n rightarrow infty} P =limlimits_{n rightarrow infty} left (1 - frac 1 n right )^n = frac 1 e.$$






                      share|cite|improve this answer











                      $endgroup$



                      Let $P= left (1 - frac 1 n right )^n.$ Then $ln P = frac {ln left (1 - frac 1 n right )} {frac 1 n}. (*)$



                      Now as $n rightarrow infty$ then $(*)$ is a $frac 0 0$ form. Applying L'Hospital we have $$begin{align*} limlimits_{n rightarrow infty} ln P & = limlimits_{n rightarrow infty} frac {frac {1} {left (1 - frac 1 n right )} cdot frac {1} {n^2}} {-frac {1} {n^2}}. \ & = - limlimits_{n rightarrow infty} frac {1} {left (1 - frac 1 n right )}. \ & = -1. end{align*}$$



                      This shows that $$limlimits_{n rightarrow infty} P =limlimits_{n rightarrow infty} left (1 - frac 1 n right )^n = frac 1 e.$$







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited yesterday

























                      answered yesterday









                      Dbchatto67Dbchatto67

                      3,185625




                      3,185625























                          -1












                          $begingroup$

                          The easiest way, working for all $r in mathbb{R}$, is to write
                          $$left( 1+ frac{r}{n}right)^n =exp left( n ln left( 1+ frac{r}{n}right)right) = exp left( n left( frac{r}{n} + oleft( frac{1}{n}right) right)right) = exp left( r + oleft( 1right) right)$$



                          So it converges to $exp(r)$.






                          share|cite|improve this answer









                          $endgroup$


















                            -1












                            $begingroup$

                            The easiest way, working for all $r in mathbb{R}$, is to write
                            $$left( 1+ frac{r}{n}right)^n =exp left( n ln left( 1+ frac{r}{n}right)right) = exp left( n left( frac{r}{n} + oleft( frac{1}{n}right) right)right) = exp left( r + oleft( 1right) right)$$



                            So it converges to $exp(r)$.






                            share|cite|improve this answer









                            $endgroup$
















                              -1












                              -1








                              -1





                              $begingroup$

                              The easiest way, working for all $r in mathbb{R}$, is to write
                              $$left( 1+ frac{r}{n}right)^n =exp left( n ln left( 1+ frac{r}{n}right)right) = exp left( n left( frac{r}{n} + oleft( frac{1}{n}right) right)right) = exp left( r + oleft( 1right) right)$$



                              So it converges to $exp(r)$.






                              share|cite|improve this answer









                              $endgroup$



                              The easiest way, working for all $r in mathbb{R}$, is to write
                              $$left( 1+ frac{r}{n}right)^n =exp left( n ln left( 1+ frac{r}{n}right)right) = exp left( n left( frac{r}{n} + oleft( frac{1}{n}right) right)right) = exp left( r + oleft( 1right) right)$$



                              So it converges to $exp(r)$.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered yesterday









                              TheSilverDoeTheSilverDoe

                              5,622316




                              5,622316























                                  -1












                                  $begingroup$

                                  $f(x):=log x;$



                                  $f'(1)= lim_{n rightarrow infty}dfrac{f(1-1/n)-f(1)}{-(1/n)}$;



                                  Hence



                                  $lim_{n rightarrow infty} (nlog(1-1/n)-log 1)=$



                                  $lim_{n rightarrow infty} (-dfrac{log (1-1/n)-log 1}{-(1/n)})=- log '(1)=-1$



                                  Then



                                  $lim_{n rightarrow infty} exp n(log (1-1/n))=$



                                  $exp (lim_{n rightarrow infty} nlog (1-1/n))=$



                                  $exp (-1)$.



                                  Used: Continuity of $exp$.






                                  share|cite|improve this answer











                                  $endgroup$


















                                    -1












                                    $begingroup$

                                    $f(x):=log x;$



                                    $f'(1)= lim_{n rightarrow infty}dfrac{f(1-1/n)-f(1)}{-(1/n)}$;



                                    Hence



                                    $lim_{n rightarrow infty} (nlog(1-1/n)-log 1)=$



                                    $lim_{n rightarrow infty} (-dfrac{log (1-1/n)-log 1}{-(1/n)})=- log '(1)=-1$



                                    Then



                                    $lim_{n rightarrow infty} exp n(log (1-1/n))=$



                                    $exp (lim_{n rightarrow infty} nlog (1-1/n))=$



                                    $exp (-1)$.



                                    Used: Continuity of $exp$.






                                    share|cite|improve this answer











                                    $endgroup$
















                                      -1












                                      -1








                                      -1





                                      $begingroup$

                                      $f(x):=log x;$



                                      $f'(1)= lim_{n rightarrow infty}dfrac{f(1-1/n)-f(1)}{-(1/n)}$;



                                      Hence



                                      $lim_{n rightarrow infty} (nlog(1-1/n)-log 1)=$



                                      $lim_{n rightarrow infty} (-dfrac{log (1-1/n)-log 1}{-(1/n)})=- log '(1)=-1$



                                      Then



                                      $lim_{n rightarrow infty} exp n(log (1-1/n))=$



                                      $exp (lim_{n rightarrow infty} nlog (1-1/n))=$



                                      $exp (-1)$.



                                      Used: Continuity of $exp$.






                                      share|cite|improve this answer











                                      $endgroup$



                                      $f(x):=log x;$



                                      $f'(1)= lim_{n rightarrow infty}dfrac{f(1-1/n)-f(1)}{-(1/n)}$;



                                      Hence



                                      $lim_{n rightarrow infty} (nlog(1-1/n)-log 1)=$



                                      $lim_{n rightarrow infty} (-dfrac{log (1-1/n)-log 1}{-(1/n)})=- log '(1)=-1$



                                      Then



                                      $lim_{n rightarrow infty} exp n(log (1-1/n))=$



                                      $exp (lim_{n rightarrow infty} nlog (1-1/n))=$



                                      $exp (-1)$.



                                      Used: Continuity of $exp$.







                                      share|cite|improve this answer














                                      share|cite|improve this answer



                                      share|cite|improve this answer








                                      edited yesterday

























                                      answered yesterday









                                      Peter SzilasPeter Szilas

                                      12k2822




                                      12k2822






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3187576%2flimit-for-e-and-frac1e%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          How did Captain America manage to do this?

                                          迪纳利

                                          南乌拉尔铁路局