Example of compact Riemannian manifold with only one closed geodesic.












7












$begingroup$


The Lyusternik-Fet theorem states that every compact Riemannian manifold has at least one closed geodesic.



Are there any easy-to-construct1 examples of compact Riemannian manifolds for which it is easy to see they only have one closed geodesic?2



If there aren't any such examples, are there any easy-to-construct examples that only have one closed geodesic but where proving this might be difficult?



And if there aren't any examples of this, are there any examples at all of compact manifolds with only one closed geodesic?





1 Of course, the $1$-sphere $S^1$ contains just one closed geodesic, but I'm interested in examples besides this one.



2 By the theorem of the three geodesics, this example cannot be a topological sphere.










share|cite|improve this question











$endgroup$

















    7












    $begingroup$


    The Lyusternik-Fet theorem states that every compact Riemannian manifold has at least one closed geodesic.



    Are there any easy-to-construct1 examples of compact Riemannian manifolds for which it is easy to see they only have one closed geodesic?2



    If there aren't any such examples, are there any easy-to-construct examples that only have one closed geodesic but where proving this might be difficult?



    And if there aren't any examples of this, are there any examples at all of compact manifolds with only one closed geodesic?





    1 Of course, the $1$-sphere $S^1$ contains just one closed geodesic, but I'm interested in examples besides this one.



    2 By the theorem of the three geodesics, this example cannot be a topological sphere.










    share|cite|improve this question











    $endgroup$















      7












      7








      7


      1



      $begingroup$


      The Lyusternik-Fet theorem states that every compact Riemannian manifold has at least one closed geodesic.



      Are there any easy-to-construct1 examples of compact Riemannian manifolds for which it is easy to see they only have one closed geodesic?2



      If there aren't any such examples, are there any easy-to-construct examples that only have one closed geodesic but where proving this might be difficult?



      And if there aren't any examples of this, are there any examples at all of compact manifolds with only one closed geodesic?





      1 Of course, the $1$-sphere $S^1$ contains just one closed geodesic, but I'm interested in examples besides this one.



      2 By the theorem of the three geodesics, this example cannot be a topological sphere.










      share|cite|improve this question











      $endgroup$




      The Lyusternik-Fet theorem states that every compact Riemannian manifold has at least one closed geodesic.



      Are there any easy-to-construct1 examples of compact Riemannian manifolds for which it is easy to see they only have one closed geodesic?2



      If there aren't any such examples, are there any easy-to-construct examples that only have one closed geodesic but where proving this might be difficult?



      And if there aren't any examples of this, are there any examples at all of compact manifolds with only one closed geodesic?





      1 Of course, the $1$-sphere $S^1$ contains just one closed geodesic, but I'm interested in examples besides this one.



      2 By the theorem of the three geodesics, this example cannot be a topological sphere.







      differential-geometry examples-counterexamples geodesic






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 6 hours ago







      Peter Kagey

















      asked 2 days ago









      Peter KageyPeter Kagey

      1,60072053




      1,60072053






















          2 Answers
          2






          active

          oldest

          votes


















          14












          $begingroup$

          First of all, you have to exclude constant maps $S^1to M$ from consideration: They are all closed geodesics. Secondly, you have to talk about geometrically distinct closed geodesics: Geodesics which have the same image are regarded as "the same". Then, it is a notorious conjecture/open problem:



          Conjecture. Every compact Riemannian manifold of dimension $n >1$ contains infinitely many geometrically distinct nonconstant geodesics.



          See for instance this survey article by Burns and Matveev.



          This is known for surfaces (with the only hard case when the surface is diffeomorphic to $S^2$ in which case the result is due to Bangert and Franks) and for many higher-dimensional manifolds. However, the problem is open already when $M$ is diffeomorphic to the sphere $S^n$, $nge 3$.






          share|cite|improve this answer











          $endgroup$





















            7












            $begingroup$

            If you analyze the geodesics using Clairaut's relation, you'll find that the only closed geodesic on a hyperboloid of one sheet is the central circle. Indeed, the same holds for a concave surface of revolution of the same "shape" as the hyperboloid of one sheet.



            EDIT: Apologies for missing the crucial compactness hypothesis.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Lovely example, but a hyperboloid isn't compact, right?
              $endgroup$
              – Peter Kagey
              2 days ago










            • $begingroup$
              Oops. Sloppy reading. I'll delete.
              $endgroup$
              – Ted Shifrin
              2 days ago






            • 1




              $begingroup$
              It's a nice example; you should leave it.
              $endgroup$
              – Peter Kagey
              2 days ago












            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185649%2fexample-of-compact-riemannian-manifold-with-only-one-closed-geodesic%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            14












            $begingroup$

            First of all, you have to exclude constant maps $S^1to M$ from consideration: They are all closed geodesics. Secondly, you have to talk about geometrically distinct closed geodesics: Geodesics which have the same image are regarded as "the same". Then, it is a notorious conjecture/open problem:



            Conjecture. Every compact Riemannian manifold of dimension $n >1$ contains infinitely many geometrically distinct nonconstant geodesics.



            See for instance this survey article by Burns and Matveev.



            This is known for surfaces (with the only hard case when the surface is diffeomorphic to $S^2$ in which case the result is due to Bangert and Franks) and for many higher-dimensional manifolds. However, the problem is open already when $M$ is diffeomorphic to the sphere $S^n$, $nge 3$.






            share|cite|improve this answer











            $endgroup$


















              14












              $begingroup$

              First of all, you have to exclude constant maps $S^1to M$ from consideration: They are all closed geodesics. Secondly, you have to talk about geometrically distinct closed geodesics: Geodesics which have the same image are regarded as "the same". Then, it is a notorious conjecture/open problem:



              Conjecture. Every compact Riemannian manifold of dimension $n >1$ contains infinitely many geometrically distinct nonconstant geodesics.



              See for instance this survey article by Burns and Matveev.



              This is known for surfaces (with the only hard case when the surface is diffeomorphic to $S^2$ in which case the result is due to Bangert and Franks) and for many higher-dimensional manifolds. However, the problem is open already when $M$ is diffeomorphic to the sphere $S^n$, $nge 3$.






              share|cite|improve this answer











              $endgroup$
















                14












                14








                14





                $begingroup$

                First of all, you have to exclude constant maps $S^1to M$ from consideration: They are all closed geodesics. Secondly, you have to talk about geometrically distinct closed geodesics: Geodesics which have the same image are regarded as "the same". Then, it is a notorious conjecture/open problem:



                Conjecture. Every compact Riemannian manifold of dimension $n >1$ contains infinitely many geometrically distinct nonconstant geodesics.



                See for instance this survey article by Burns and Matveev.



                This is known for surfaces (with the only hard case when the surface is diffeomorphic to $S^2$ in which case the result is due to Bangert and Franks) and for many higher-dimensional manifolds. However, the problem is open already when $M$ is diffeomorphic to the sphere $S^n$, $nge 3$.






                share|cite|improve this answer











                $endgroup$



                First of all, you have to exclude constant maps $S^1to M$ from consideration: They are all closed geodesics. Secondly, you have to talk about geometrically distinct closed geodesics: Geodesics which have the same image are regarded as "the same". Then, it is a notorious conjecture/open problem:



                Conjecture. Every compact Riemannian manifold of dimension $n >1$ contains infinitely many geometrically distinct nonconstant geodesics.



                See for instance this survey article by Burns and Matveev.



                This is known for surfaces (with the only hard case when the surface is diffeomorphic to $S^2$ in which case the result is due to Bangert and Franks) and for many higher-dimensional manifolds. However, the problem is open already when $M$ is diffeomorphic to the sphere $S^n$, $nge 3$.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited yesterday

























                answered 2 days ago









                Moishe KohanMoishe Kohan

                48.8k344111




                48.8k344111























                    7












                    $begingroup$

                    If you analyze the geodesics using Clairaut's relation, you'll find that the only closed geodesic on a hyperboloid of one sheet is the central circle. Indeed, the same holds for a concave surface of revolution of the same "shape" as the hyperboloid of one sheet.



                    EDIT: Apologies for missing the crucial compactness hypothesis.






                    share|cite|improve this answer











                    $endgroup$













                    • $begingroup$
                      Lovely example, but a hyperboloid isn't compact, right?
                      $endgroup$
                      – Peter Kagey
                      2 days ago










                    • $begingroup$
                      Oops. Sloppy reading. I'll delete.
                      $endgroup$
                      – Ted Shifrin
                      2 days ago






                    • 1




                      $begingroup$
                      It's a nice example; you should leave it.
                      $endgroup$
                      – Peter Kagey
                      2 days ago
















                    7












                    $begingroup$

                    If you analyze the geodesics using Clairaut's relation, you'll find that the only closed geodesic on a hyperboloid of one sheet is the central circle. Indeed, the same holds for a concave surface of revolution of the same "shape" as the hyperboloid of one sheet.



                    EDIT: Apologies for missing the crucial compactness hypothesis.






                    share|cite|improve this answer











                    $endgroup$













                    • $begingroup$
                      Lovely example, but a hyperboloid isn't compact, right?
                      $endgroup$
                      – Peter Kagey
                      2 days ago










                    • $begingroup$
                      Oops. Sloppy reading. I'll delete.
                      $endgroup$
                      – Ted Shifrin
                      2 days ago






                    • 1




                      $begingroup$
                      It's a nice example; you should leave it.
                      $endgroup$
                      – Peter Kagey
                      2 days ago














                    7












                    7








                    7





                    $begingroup$

                    If you analyze the geodesics using Clairaut's relation, you'll find that the only closed geodesic on a hyperboloid of one sheet is the central circle. Indeed, the same holds for a concave surface of revolution of the same "shape" as the hyperboloid of one sheet.



                    EDIT: Apologies for missing the crucial compactness hypothesis.






                    share|cite|improve this answer











                    $endgroup$



                    If you analyze the geodesics using Clairaut's relation, you'll find that the only closed geodesic on a hyperboloid of one sheet is the central circle. Indeed, the same holds for a concave surface of revolution of the same "shape" as the hyperboloid of one sheet.



                    EDIT: Apologies for missing the crucial compactness hypothesis.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 2 days ago

























                    answered 2 days ago









                    Ted ShifrinTed Shifrin

                    65.1k44792




                    65.1k44792












                    • $begingroup$
                      Lovely example, but a hyperboloid isn't compact, right?
                      $endgroup$
                      – Peter Kagey
                      2 days ago










                    • $begingroup$
                      Oops. Sloppy reading. I'll delete.
                      $endgroup$
                      – Ted Shifrin
                      2 days ago






                    • 1




                      $begingroup$
                      It's a nice example; you should leave it.
                      $endgroup$
                      – Peter Kagey
                      2 days ago


















                    • $begingroup$
                      Lovely example, but a hyperboloid isn't compact, right?
                      $endgroup$
                      – Peter Kagey
                      2 days ago










                    • $begingroup$
                      Oops. Sloppy reading. I'll delete.
                      $endgroup$
                      – Ted Shifrin
                      2 days ago






                    • 1




                      $begingroup$
                      It's a nice example; you should leave it.
                      $endgroup$
                      – Peter Kagey
                      2 days ago
















                    $begingroup$
                    Lovely example, but a hyperboloid isn't compact, right?
                    $endgroup$
                    – Peter Kagey
                    2 days ago




                    $begingroup$
                    Lovely example, but a hyperboloid isn't compact, right?
                    $endgroup$
                    – Peter Kagey
                    2 days ago












                    $begingroup$
                    Oops. Sloppy reading. I'll delete.
                    $endgroup$
                    – Ted Shifrin
                    2 days ago




                    $begingroup$
                    Oops. Sloppy reading. I'll delete.
                    $endgroup$
                    – Ted Shifrin
                    2 days ago




                    1




                    1




                    $begingroup$
                    It's a nice example; you should leave it.
                    $endgroup$
                    – Peter Kagey
                    2 days ago




                    $begingroup$
                    It's a nice example; you should leave it.
                    $endgroup$
                    – Peter Kagey
                    2 days ago


















                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185649%2fexample-of-compact-riemannian-manifold-with-only-one-closed-geodesic%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How did Captain America manage to do this?

                    迪纳利

                    南乌拉尔铁路局