How to move forward in Mathematics Studies with poor foundation












5














So I discovered halfway through my first year university math term that my foundation of mathematics is very poor. I would memorize stuff rather than understand it and still get 95+ in high school so that's what I did. I quickly realized that doesn't work at all in university. It's embarrassing but I didn't really even know what a derivative really meant and I'm in University Math!



Anyways, I passed my math courses barely with 60-70, and did way better on the finals than I did on my midterms which is a sign that I'm heading in the right direction (I went back and looked at a whole bunch of khan academy high school math concepts) but it was hard to juggle doing that and keeping up with current stuff in class.



So now the term is over and I want to prepare for next term. My question is, should I go back and review basically all the high school stuff I memorized (and forgot), or should I just start studying the new material by reading the textbook ahead and actually understanding the concepts through practice this time?



(The 2 math classes I had this previous term was Calculus 1 and Algebra/Proofs, and my next 2 classes are Linear Algebra and Calculus 2)



Thanks!










share|cite|improve this question






















  • how did you do proof questions without understanding what you was writing?
    – ricky
    4 hours ago










  • A ton of help from the tutorial centre and friends for assignments, almost failed my midterm, basically passed because of part marks and questions I recognized from the textbook, and in the Final, that's when I really started to realize what was wrong with my studying and so I studied super hard for a week so I managed to get around ~70, but I'm still lacking a lot.
    – ming
    3 hours ago
















5














So I discovered halfway through my first year university math term that my foundation of mathematics is very poor. I would memorize stuff rather than understand it and still get 95+ in high school so that's what I did. I quickly realized that doesn't work at all in university. It's embarrassing but I didn't really even know what a derivative really meant and I'm in University Math!



Anyways, I passed my math courses barely with 60-70, and did way better on the finals than I did on my midterms which is a sign that I'm heading in the right direction (I went back and looked at a whole bunch of khan academy high school math concepts) but it was hard to juggle doing that and keeping up with current stuff in class.



So now the term is over and I want to prepare for next term. My question is, should I go back and review basically all the high school stuff I memorized (and forgot), or should I just start studying the new material by reading the textbook ahead and actually understanding the concepts through practice this time?



(The 2 math classes I had this previous term was Calculus 1 and Algebra/Proofs, and my next 2 classes are Linear Algebra and Calculus 2)



Thanks!










share|cite|improve this question






















  • how did you do proof questions without understanding what you was writing?
    – ricky
    4 hours ago










  • A ton of help from the tutorial centre and friends for assignments, almost failed my midterm, basically passed because of part marks and questions I recognized from the textbook, and in the Final, that's when I really started to realize what was wrong with my studying and so I studied super hard for a week so I managed to get around ~70, but I'm still lacking a lot.
    – ming
    3 hours ago














5












5








5







So I discovered halfway through my first year university math term that my foundation of mathematics is very poor. I would memorize stuff rather than understand it and still get 95+ in high school so that's what I did. I quickly realized that doesn't work at all in university. It's embarrassing but I didn't really even know what a derivative really meant and I'm in University Math!



Anyways, I passed my math courses barely with 60-70, and did way better on the finals than I did on my midterms which is a sign that I'm heading in the right direction (I went back and looked at a whole bunch of khan academy high school math concepts) but it was hard to juggle doing that and keeping up with current stuff in class.



So now the term is over and I want to prepare for next term. My question is, should I go back and review basically all the high school stuff I memorized (and forgot), or should I just start studying the new material by reading the textbook ahead and actually understanding the concepts through practice this time?



(The 2 math classes I had this previous term was Calculus 1 and Algebra/Proofs, and my next 2 classes are Linear Algebra and Calculus 2)



Thanks!










share|cite|improve this question













So I discovered halfway through my first year university math term that my foundation of mathematics is very poor. I would memorize stuff rather than understand it and still get 95+ in high school so that's what I did. I quickly realized that doesn't work at all in university. It's embarrassing but I didn't really even know what a derivative really meant and I'm in University Math!



Anyways, I passed my math courses barely with 60-70, and did way better on the finals than I did on my midterms which is a sign that I'm heading in the right direction (I went back and looked at a whole bunch of khan academy high school math concepts) but it was hard to juggle doing that and keeping up with current stuff in class.



So now the term is over and I want to prepare for next term. My question is, should I go back and review basically all the high school stuff I memorized (and forgot), or should I just start studying the new material by reading the textbook ahead and actually understanding the concepts through practice this time?



(The 2 math classes I had this previous term was Calculus 1 and Algebra/Proofs, and my next 2 classes are Linear Algebra and Calculus 2)



Thanks!







calculus education






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 4 hours ago









ming

3065




3065












  • how did you do proof questions without understanding what you was writing?
    – ricky
    4 hours ago










  • A ton of help from the tutorial centre and friends for assignments, almost failed my midterm, basically passed because of part marks and questions I recognized from the textbook, and in the Final, that's when I really started to realize what was wrong with my studying and so I studied super hard for a week so I managed to get around ~70, but I'm still lacking a lot.
    – ming
    3 hours ago


















  • how did you do proof questions without understanding what you was writing?
    – ricky
    4 hours ago










  • A ton of help from the tutorial centre and friends for assignments, almost failed my midterm, basically passed because of part marks and questions I recognized from the textbook, and in the Final, that's when I really started to realize what was wrong with my studying and so I studied super hard for a week so I managed to get around ~70, but I'm still lacking a lot.
    – ming
    3 hours ago
















how did you do proof questions without understanding what you was writing?
– ricky
4 hours ago




how did you do proof questions without understanding what you was writing?
– ricky
4 hours ago












A ton of help from the tutorial centre and friends for assignments, almost failed my midterm, basically passed because of part marks and questions I recognized from the textbook, and in the Final, that's when I really started to realize what was wrong with my studying and so I studied super hard for a week so I managed to get around ~70, but I'm still lacking a lot.
– ming
3 hours ago




A ton of help from the tutorial centre and friends for assignments, almost failed my midterm, basically passed because of part marks and questions I recognized from the textbook, and in the Final, that's when I really started to realize what was wrong with my studying and so I studied super hard for a week so I managed to get around ~70, but I'm still lacking a lot.
– ming
3 hours ago










1 Answer
1






active

oldest

votes


















3














As I'm sure is the situation with many other people, I've had friends who did well in math earlier on in school, but then got behind, mostly due to having a poor teacher. They usually never got back on track and continued having difficulty with math. More than most other topics, I believe, later math is built on understanding and using concepts learned earlier, which is an important reason why those friends weren't able to continue doing well in later years. If you don't understand those earlier topics, it will make it difficult to understand many later ones, especially those which directly use or expand on the earlier concepts. As such, instead of first trying to study ahead, I think it's best to first ensure you fully understand your high school math concepts. After that, if you have the time and interest, it would then be useful to examine the material for next year ahead of time.



Good luck in your future studies.






share|cite|improve this answer








New contributor




John Omielan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.


















  • So what is the best way I can study previous stuff? It's not like I can go back and do high school again haha. Should I review my old notes from high school? Go through all the youtube tutorials for high school math? Idk where to start
    – ming
    3 hours ago






  • 2




    @ming Everyone is somewhat different in what is the best way for them to learn. For example, I prefer to learn by reading. Other people are more visual, so some sort of video (such as YouTube) works best for them. On top of that, I'm not sure how good or useful your old notes are. As for where to start, I suggest you try several things, see what seems to be working best for you and then continue focusing on those method(s).
    – John Omielan
    3 hours ago












  • @ming I agree with john but with more emphasis on actually learning and understanding what the definitions mean then progress to doing questions, that way you're not just copying a particular method but you actually understand the reason on why you're doing it. You'll see this definitely in Linear Algebra and MVA
    – ricky
    3 hours ago












  • @ming One thing I'm doing (many years later and for myself rather than exams) is try to identify every step that I feel I'm "taking for granted" or skating over when doing a piece of maths. This sometimes leads me back to half-explained basics which I then set about proving. Maybe you can do that: let the new material guide you back to the specific bits high school material that you need to consolidate.
    – timtfj
    3 hours ago












  • @ming If it works for you, you should then find that you understand both the new material and the more basic maths that it depends on. Also you'll be motivated to learn the earlier stuff, because you'll be focusing on the parts that you have an immediate use for.
    – timtfj
    3 hours ago













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050758%2fhow-to-move-forward-in-mathematics-studies-with-poor-foundation%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3














As I'm sure is the situation with many other people, I've had friends who did well in math earlier on in school, but then got behind, mostly due to having a poor teacher. They usually never got back on track and continued having difficulty with math. More than most other topics, I believe, later math is built on understanding and using concepts learned earlier, which is an important reason why those friends weren't able to continue doing well in later years. If you don't understand those earlier topics, it will make it difficult to understand many later ones, especially those which directly use or expand on the earlier concepts. As such, instead of first trying to study ahead, I think it's best to first ensure you fully understand your high school math concepts. After that, if you have the time and interest, it would then be useful to examine the material for next year ahead of time.



Good luck in your future studies.






share|cite|improve this answer








New contributor




John Omielan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.


















  • So what is the best way I can study previous stuff? It's not like I can go back and do high school again haha. Should I review my old notes from high school? Go through all the youtube tutorials for high school math? Idk where to start
    – ming
    3 hours ago






  • 2




    @ming Everyone is somewhat different in what is the best way for them to learn. For example, I prefer to learn by reading. Other people are more visual, so some sort of video (such as YouTube) works best for them. On top of that, I'm not sure how good or useful your old notes are. As for where to start, I suggest you try several things, see what seems to be working best for you and then continue focusing on those method(s).
    – John Omielan
    3 hours ago












  • @ming I agree with john but with more emphasis on actually learning and understanding what the definitions mean then progress to doing questions, that way you're not just copying a particular method but you actually understand the reason on why you're doing it. You'll see this definitely in Linear Algebra and MVA
    – ricky
    3 hours ago












  • @ming One thing I'm doing (many years later and for myself rather than exams) is try to identify every step that I feel I'm "taking for granted" or skating over when doing a piece of maths. This sometimes leads me back to half-explained basics which I then set about proving. Maybe you can do that: let the new material guide you back to the specific bits high school material that you need to consolidate.
    – timtfj
    3 hours ago












  • @ming If it works for you, you should then find that you understand both the new material and the more basic maths that it depends on. Also you'll be motivated to learn the earlier stuff, because you'll be focusing on the parts that you have an immediate use for.
    – timtfj
    3 hours ago


















3














As I'm sure is the situation with many other people, I've had friends who did well in math earlier on in school, but then got behind, mostly due to having a poor teacher. They usually never got back on track and continued having difficulty with math. More than most other topics, I believe, later math is built on understanding and using concepts learned earlier, which is an important reason why those friends weren't able to continue doing well in later years. If you don't understand those earlier topics, it will make it difficult to understand many later ones, especially those which directly use or expand on the earlier concepts. As such, instead of first trying to study ahead, I think it's best to first ensure you fully understand your high school math concepts. After that, if you have the time and interest, it would then be useful to examine the material for next year ahead of time.



Good luck in your future studies.






share|cite|improve this answer








New contributor




John Omielan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.


















  • So what is the best way I can study previous stuff? It's not like I can go back and do high school again haha. Should I review my old notes from high school? Go through all the youtube tutorials for high school math? Idk where to start
    – ming
    3 hours ago






  • 2




    @ming Everyone is somewhat different in what is the best way for them to learn. For example, I prefer to learn by reading. Other people are more visual, so some sort of video (such as YouTube) works best for them. On top of that, I'm not sure how good or useful your old notes are. As for where to start, I suggest you try several things, see what seems to be working best for you and then continue focusing on those method(s).
    – John Omielan
    3 hours ago












  • @ming I agree with john but with more emphasis on actually learning and understanding what the definitions mean then progress to doing questions, that way you're not just copying a particular method but you actually understand the reason on why you're doing it. You'll see this definitely in Linear Algebra and MVA
    – ricky
    3 hours ago












  • @ming One thing I'm doing (many years later and for myself rather than exams) is try to identify every step that I feel I'm "taking for granted" or skating over when doing a piece of maths. This sometimes leads me back to half-explained basics which I then set about proving. Maybe you can do that: let the new material guide you back to the specific bits high school material that you need to consolidate.
    – timtfj
    3 hours ago












  • @ming If it works for you, you should then find that you understand both the new material and the more basic maths that it depends on. Also you'll be motivated to learn the earlier stuff, because you'll be focusing on the parts that you have an immediate use for.
    – timtfj
    3 hours ago
















3












3








3






As I'm sure is the situation with many other people, I've had friends who did well in math earlier on in school, but then got behind, mostly due to having a poor teacher. They usually never got back on track and continued having difficulty with math. More than most other topics, I believe, later math is built on understanding and using concepts learned earlier, which is an important reason why those friends weren't able to continue doing well in later years. If you don't understand those earlier topics, it will make it difficult to understand many later ones, especially those which directly use or expand on the earlier concepts. As such, instead of first trying to study ahead, I think it's best to first ensure you fully understand your high school math concepts. After that, if you have the time and interest, it would then be useful to examine the material for next year ahead of time.



Good luck in your future studies.






share|cite|improve this answer








New contributor




John Omielan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









As I'm sure is the situation with many other people, I've had friends who did well in math earlier on in school, but then got behind, mostly due to having a poor teacher. They usually never got back on track and continued having difficulty with math. More than most other topics, I believe, later math is built on understanding and using concepts learned earlier, which is an important reason why those friends weren't able to continue doing well in later years. If you don't understand those earlier topics, it will make it difficult to understand many later ones, especially those which directly use or expand on the earlier concepts. As such, instead of first trying to study ahead, I think it's best to first ensure you fully understand your high school math concepts. After that, if you have the time and interest, it would then be useful to examine the material for next year ahead of time.



Good luck in your future studies.







share|cite|improve this answer








New contributor




John Omielan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this answer



share|cite|improve this answer






New contributor




John Omielan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









answered 4 hours ago









John Omielan

1416




1416




New contributor




John Omielan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





John Omielan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






John Omielan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • So what is the best way I can study previous stuff? It's not like I can go back and do high school again haha. Should I review my old notes from high school? Go through all the youtube tutorials for high school math? Idk where to start
    – ming
    3 hours ago






  • 2




    @ming Everyone is somewhat different in what is the best way for them to learn. For example, I prefer to learn by reading. Other people are more visual, so some sort of video (such as YouTube) works best for them. On top of that, I'm not sure how good or useful your old notes are. As for where to start, I suggest you try several things, see what seems to be working best for you and then continue focusing on those method(s).
    – John Omielan
    3 hours ago












  • @ming I agree with john but with more emphasis on actually learning and understanding what the definitions mean then progress to doing questions, that way you're not just copying a particular method but you actually understand the reason on why you're doing it. You'll see this definitely in Linear Algebra and MVA
    – ricky
    3 hours ago












  • @ming One thing I'm doing (many years later and for myself rather than exams) is try to identify every step that I feel I'm "taking for granted" or skating over when doing a piece of maths. This sometimes leads me back to half-explained basics which I then set about proving. Maybe you can do that: let the new material guide you back to the specific bits high school material that you need to consolidate.
    – timtfj
    3 hours ago












  • @ming If it works for you, you should then find that you understand both the new material and the more basic maths that it depends on. Also you'll be motivated to learn the earlier stuff, because you'll be focusing on the parts that you have an immediate use for.
    – timtfj
    3 hours ago




















  • So what is the best way I can study previous stuff? It's not like I can go back and do high school again haha. Should I review my old notes from high school? Go through all the youtube tutorials for high school math? Idk where to start
    – ming
    3 hours ago






  • 2




    @ming Everyone is somewhat different in what is the best way for them to learn. For example, I prefer to learn by reading. Other people are more visual, so some sort of video (such as YouTube) works best for them. On top of that, I'm not sure how good or useful your old notes are. As for where to start, I suggest you try several things, see what seems to be working best for you and then continue focusing on those method(s).
    – John Omielan
    3 hours ago












  • @ming I agree with john but with more emphasis on actually learning and understanding what the definitions mean then progress to doing questions, that way you're not just copying a particular method but you actually understand the reason on why you're doing it. You'll see this definitely in Linear Algebra and MVA
    – ricky
    3 hours ago












  • @ming One thing I'm doing (many years later and for myself rather than exams) is try to identify every step that I feel I'm "taking for granted" or skating over when doing a piece of maths. This sometimes leads me back to half-explained basics which I then set about proving. Maybe you can do that: let the new material guide you back to the specific bits high school material that you need to consolidate.
    – timtfj
    3 hours ago












  • @ming If it works for you, you should then find that you understand both the new material and the more basic maths that it depends on. Also you'll be motivated to learn the earlier stuff, because you'll be focusing on the parts that you have an immediate use for.
    – timtfj
    3 hours ago


















So what is the best way I can study previous stuff? It's not like I can go back and do high school again haha. Should I review my old notes from high school? Go through all the youtube tutorials for high school math? Idk where to start
– ming
3 hours ago




So what is the best way I can study previous stuff? It's not like I can go back and do high school again haha. Should I review my old notes from high school? Go through all the youtube tutorials for high school math? Idk where to start
– ming
3 hours ago




2




2




@ming Everyone is somewhat different in what is the best way for them to learn. For example, I prefer to learn by reading. Other people are more visual, so some sort of video (such as YouTube) works best for them. On top of that, I'm not sure how good or useful your old notes are. As for where to start, I suggest you try several things, see what seems to be working best for you and then continue focusing on those method(s).
– John Omielan
3 hours ago






@ming Everyone is somewhat different in what is the best way for them to learn. For example, I prefer to learn by reading. Other people are more visual, so some sort of video (such as YouTube) works best for them. On top of that, I'm not sure how good or useful your old notes are. As for where to start, I suggest you try several things, see what seems to be working best for you and then continue focusing on those method(s).
– John Omielan
3 hours ago














@ming I agree with john but with more emphasis on actually learning and understanding what the definitions mean then progress to doing questions, that way you're not just copying a particular method but you actually understand the reason on why you're doing it. You'll see this definitely in Linear Algebra and MVA
– ricky
3 hours ago






@ming I agree with john but with more emphasis on actually learning and understanding what the definitions mean then progress to doing questions, that way you're not just copying a particular method but you actually understand the reason on why you're doing it. You'll see this definitely in Linear Algebra and MVA
– ricky
3 hours ago














@ming One thing I'm doing (many years later and for myself rather than exams) is try to identify every step that I feel I'm "taking for granted" or skating over when doing a piece of maths. This sometimes leads me back to half-explained basics which I then set about proving. Maybe you can do that: let the new material guide you back to the specific bits high school material that you need to consolidate.
– timtfj
3 hours ago






@ming One thing I'm doing (many years later and for myself rather than exams) is try to identify every step that I feel I'm "taking for granted" or skating over when doing a piece of maths. This sometimes leads me back to half-explained basics which I then set about proving. Maybe you can do that: let the new material guide you back to the specific bits high school material that you need to consolidate.
– timtfj
3 hours ago














@ming If it works for you, you should then find that you understand both the new material and the more basic maths that it depends on. Also you'll be motivated to learn the earlier stuff, because you'll be focusing on the parts that you have an immediate use for.
– timtfj
3 hours ago






@ming If it works for you, you should then find that you understand both the new material and the more basic maths that it depends on. Also you'll be motivated to learn the earlier stuff, because you'll be focusing on the parts that you have an immediate use for.
– timtfj
3 hours ago




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050758%2fhow-to-move-forward-in-mathematics-studies-with-poor-foundation%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

數位音樂下載

When can things happen in Etherscan, such as the picture below?

格利澤436b