Could a terrestrial planet have water for a core?
$begingroup$
There’s a planet called eaglypt whose surface is 100% barren desert. However, there is a twist: the planet’s core consists of liquid water, and there are a few places where this water seeps through the cracks and reaches the surface, where it creates fertile oases where civilizations can spring up, using the oases for irrigation. Is this realistic for a planet to exist like this or would it take serious artistic license for it to exist?
reality-check planets water deserts
$endgroup$
add a comment |
$begingroup$
There’s a planet called eaglypt whose surface is 100% barren desert. However, there is a twist: the planet’s core consists of liquid water, and there are a few places where this water seeps through the cracks and reaches the surface, where it creates fertile oases where civilizations can spring up, using the oases for irrigation. Is this realistic for a planet to exist like this or would it take serious artistic license for it to exist?
reality-check planets water deserts
$endgroup$
add a comment |
$begingroup$
There’s a planet called eaglypt whose surface is 100% barren desert. However, there is a twist: the planet’s core consists of liquid water, and there are a few places where this water seeps through the cracks and reaches the surface, where it creates fertile oases where civilizations can spring up, using the oases for irrigation. Is this realistic for a planet to exist like this or would it take serious artistic license for it to exist?
reality-check planets water deserts
$endgroup$
There’s a planet called eaglypt whose surface is 100% barren desert. However, there is a twist: the planet’s core consists of liquid water, and there are a few places where this water seeps through the cracks and reaches the surface, where it creates fertile oases where civilizations can spring up, using the oases for irrigation. Is this realistic for a planet to exist like this or would it take serious artistic license for it to exist?
reality-check planets water deserts
reality-check planets water deserts
edited 4 hours ago
L.Dutch♦
80.4k26192391
80.4k26192391
asked 4 hours ago
The Weasel SagasThe Weasel Sagas
1,167121
1,167121
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Water cannot remain fluid at the pressures of a terrestrial planet's core. However, it doesn't need to for your setting to be viable. The planet's crust could simply possess large, deep aquifers that provide water to oases. Some good examples of large aquifers beneath a desert are Australia's Great Artesian Basin, and the Nubian Sandstone Aquifer System.
$endgroup$
add a comment |
$begingroup$
For water to be at the core of the planet, it must mean that there are no other elements or components which are denser than water.
Now, water is pretty dense, but nowhere dense as most of the metals or oxides.
It can happen that only light elements are collected by gravity, but such a planet could not host life as we know it: no magnetic field to shield stellar wind, just to cite one big difference.
$endgroup$
add a comment |
$begingroup$
It would take serious artistic license to exist, but...
I do not believe a planet could naturally evolve into this state. The problem isn't actually pressure. People assume that the further down you go, the more pressure there is. It's true to an extent, but the closer to the center you get the less you experience gravity (zero gravity at the center!). Pressure is something that makes sense when you're talking about the crust or rigid mantle. But if it applied to the liquid core, every crack in the mantle would result in massive eruptions — but they don't.
On the other hand, what you do get is heat. We don't really have proof of what's at the center of our planet, but a century of science has given us some really good guesses. We guess that there's a solid core. It's spinning at a different speed compared to the crust. Everything in the middle is subject to tremendous friction. Result = super heated rock. We think.
From the perspective of "solid stuff slowly combines via gravity over bazillions of years until some fool stamps his feet and says, 'let's call it a planet,'" this model works very well — but it doesn't explain where water comes from and that's actually been something scientists have pondered for a long time.
So, let's pretend that your world started as a honking lot of water orbiting a newly forming star and it starts to gather via gravity...
Why not? It's your world. From this perspective your world has a very, very low average density. There may still be a solid core of stuff (almost everything sinks through water, which is a better than average argument against this, unless there's a honking lot of water) but the middle isn't molten rock, it's super heated water.
And when the crust breaks, what you get is steam.
The crust is similar to a Roman arch — it's all spun out such that the bedrock is very, very flat and uniform. There would be no mountains — no plate tectonics to speak of — hot water, unlike magma, doesn't have the mass to push the surface around, which means earthquakes are caused by the heating/cooling cycle of the sun and occur most often at what we would call the tropics of cancer and capricorn (latitudes of highest thermal gradient between the poles and the equator).
This has the potential of meaning a lot of aquifers, but I'm having trouble keeping the land a desert. Water + sunlight = life. It would have to be a closer-to-the-sun planet such that the heat would burn off the water and the life. The consequence (thanks to the humidity) would be a lot of clouds, storms, and the night-side would get cold.
At least that's what I think.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "579"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fworldbuilding.stackexchange.com%2fquestions%2f137186%2fcould-a-terrestrial-planet-have-water-for-a-core%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Water cannot remain fluid at the pressures of a terrestrial planet's core. However, it doesn't need to for your setting to be viable. The planet's crust could simply possess large, deep aquifers that provide water to oases. Some good examples of large aquifers beneath a desert are Australia's Great Artesian Basin, and the Nubian Sandstone Aquifer System.
$endgroup$
add a comment |
$begingroup$
Water cannot remain fluid at the pressures of a terrestrial planet's core. However, it doesn't need to for your setting to be viable. The planet's crust could simply possess large, deep aquifers that provide water to oases. Some good examples of large aquifers beneath a desert are Australia's Great Artesian Basin, and the Nubian Sandstone Aquifer System.
$endgroup$
add a comment |
$begingroup$
Water cannot remain fluid at the pressures of a terrestrial planet's core. However, it doesn't need to for your setting to be viable. The planet's crust could simply possess large, deep aquifers that provide water to oases. Some good examples of large aquifers beneath a desert are Australia's Great Artesian Basin, and the Nubian Sandstone Aquifer System.
$endgroup$
Water cannot remain fluid at the pressures of a terrestrial planet's core. However, it doesn't need to for your setting to be viable. The planet's crust could simply possess large, deep aquifers that provide water to oases. Some good examples of large aquifers beneath a desert are Australia's Great Artesian Basin, and the Nubian Sandstone Aquifer System.
answered 4 hours ago
Arkenstein XIIArkenstein XII
2,357425
2,357425
add a comment |
add a comment |
$begingroup$
For water to be at the core of the planet, it must mean that there are no other elements or components which are denser than water.
Now, water is pretty dense, but nowhere dense as most of the metals or oxides.
It can happen that only light elements are collected by gravity, but such a planet could not host life as we know it: no magnetic field to shield stellar wind, just to cite one big difference.
$endgroup$
add a comment |
$begingroup$
For water to be at the core of the planet, it must mean that there are no other elements or components which are denser than water.
Now, water is pretty dense, but nowhere dense as most of the metals or oxides.
It can happen that only light elements are collected by gravity, but such a planet could not host life as we know it: no magnetic field to shield stellar wind, just to cite one big difference.
$endgroup$
add a comment |
$begingroup$
For water to be at the core of the planet, it must mean that there are no other elements or components which are denser than water.
Now, water is pretty dense, but nowhere dense as most of the metals or oxides.
It can happen that only light elements are collected by gravity, but such a planet could not host life as we know it: no magnetic field to shield stellar wind, just to cite one big difference.
$endgroup$
For water to be at the core of the planet, it must mean that there are no other elements or components which are denser than water.
Now, water is pretty dense, but nowhere dense as most of the metals or oxides.
It can happen that only light elements are collected by gravity, but such a planet could not host life as we know it: no magnetic field to shield stellar wind, just to cite one big difference.
answered 4 hours ago
L.Dutch♦L.Dutch
80.4k26192391
80.4k26192391
add a comment |
add a comment |
$begingroup$
It would take serious artistic license to exist, but...
I do not believe a planet could naturally evolve into this state. The problem isn't actually pressure. People assume that the further down you go, the more pressure there is. It's true to an extent, but the closer to the center you get the less you experience gravity (zero gravity at the center!). Pressure is something that makes sense when you're talking about the crust or rigid mantle. But if it applied to the liquid core, every crack in the mantle would result in massive eruptions — but they don't.
On the other hand, what you do get is heat. We don't really have proof of what's at the center of our planet, but a century of science has given us some really good guesses. We guess that there's a solid core. It's spinning at a different speed compared to the crust. Everything in the middle is subject to tremendous friction. Result = super heated rock. We think.
From the perspective of "solid stuff slowly combines via gravity over bazillions of years until some fool stamps his feet and says, 'let's call it a planet,'" this model works very well — but it doesn't explain where water comes from and that's actually been something scientists have pondered for a long time.
So, let's pretend that your world started as a honking lot of water orbiting a newly forming star and it starts to gather via gravity...
Why not? It's your world. From this perspective your world has a very, very low average density. There may still be a solid core of stuff (almost everything sinks through water, which is a better than average argument against this, unless there's a honking lot of water) but the middle isn't molten rock, it's super heated water.
And when the crust breaks, what you get is steam.
The crust is similar to a Roman arch — it's all spun out such that the bedrock is very, very flat and uniform. There would be no mountains — no plate tectonics to speak of — hot water, unlike magma, doesn't have the mass to push the surface around, which means earthquakes are caused by the heating/cooling cycle of the sun and occur most often at what we would call the tropics of cancer and capricorn (latitudes of highest thermal gradient between the poles and the equator).
This has the potential of meaning a lot of aquifers, but I'm having trouble keeping the land a desert. Water + sunlight = life. It would have to be a closer-to-the-sun planet such that the heat would burn off the water and the life. The consequence (thanks to the humidity) would be a lot of clouds, storms, and the night-side would get cold.
At least that's what I think.
$endgroup$
add a comment |
$begingroup$
It would take serious artistic license to exist, but...
I do not believe a planet could naturally evolve into this state. The problem isn't actually pressure. People assume that the further down you go, the more pressure there is. It's true to an extent, but the closer to the center you get the less you experience gravity (zero gravity at the center!). Pressure is something that makes sense when you're talking about the crust or rigid mantle. But if it applied to the liquid core, every crack in the mantle would result in massive eruptions — but they don't.
On the other hand, what you do get is heat. We don't really have proof of what's at the center of our planet, but a century of science has given us some really good guesses. We guess that there's a solid core. It's spinning at a different speed compared to the crust. Everything in the middle is subject to tremendous friction. Result = super heated rock. We think.
From the perspective of "solid stuff slowly combines via gravity over bazillions of years until some fool stamps his feet and says, 'let's call it a planet,'" this model works very well — but it doesn't explain where water comes from and that's actually been something scientists have pondered for a long time.
So, let's pretend that your world started as a honking lot of water orbiting a newly forming star and it starts to gather via gravity...
Why not? It's your world. From this perspective your world has a very, very low average density. There may still be a solid core of stuff (almost everything sinks through water, which is a better than average argument against this, unless there's a honking lot of water) but the middle isn't molten rock, it's super heated water.
And when the crust breaks, what you get is steam.
The crust is similar to a Roman arch — it's all spun out such that the bedrock is very, very flat and uniform. There would be no mountains — no plate tectonics to speak of — hot water, unlike magma, doesn't have the mass to push the surface around, which means earthquakes are caused by the heating/cooling cycle of the sun and occur most often at what we would call the tropics of cancer and capricorn (latitudes of highest thermal gradient between the poles and the equator).
This has the potential of meaning a lot of aquifers, but I'm having trouble keeping the land a desert. Water + sunlight = life. It would have to be a closer-to-the-sun planet such that the heat would burn off the water and the life. The consequence (thanks to the humidity) would be a lot of clouds, storms, and the night-side would get cold.
At least that's what I think.
$endgroup$
add a comment |
$begingroup$
It would take serious artistic license to exist, but...
I do not believe a planet could naturally evolve into this state. The problem isn't actually pressure. People assume that the further down you go, the more pressure there is. It's true to an extent, but the closer to the center you get the less you experience gravity (zero gravity at the center!). Pressure is something that makes sense when you're talking about the crust or rigid mantle. But if it applied to the liquid core, every crack in the mantle would result in massive eruptions — but they don't.
On the other hand, what you do get is heat. We don't really have proof of what's at the center of our planet, but a century of science has given us some really good guesses. We guess that there's a solid core. It's spinning at a different speed compared to the crust. Everything in the middle is subject to tremendous friction. Result = super heated rock. We think.
From the perspective of "solid stuff slowly combines via gravity over bazillions of years until some fool stamps his feet and says, 'let's call it a planet,'" this model works very well — but it doesn't explain where water comes from and that's actually been something scientists have pondered for a long time.
So, let's pretend that your world started as a honking lot of water orbiting a newly forming star and it starts to gather via gravity...
Why not? It's your world. From this perspective your world has a very, very low average density. There may still be a solid core of stuff (almost everything sinks through water, which is a better than average argument against this, unless there's a honking lot of water) but the middle isn't molten rock, it's super heated water.
And when the crust breaks, what you get is steam.
The crust is similar to a Roman arch — it's all spun out such that the bedrock is very, very flat and uniform. There would be no mountains — no plate tectonics to speak of — hot water, unlike magma, doesn't have the mass to push the surface around, which means earthquakes are caused by the heating/cooling cycle of the sun and occur most often at what we would call the tropics of cancer and capricorn (latitudes of highest thermal gradient between the poles and the equator).
This has the potential of meaning a lot of aquifers, but I'm having trouble keeping the land a desert. Water + sunlight = life. It would have to be a closer-to-the-sun planet such that the heat would burn off the water and the life. The consequence (thanks to the humidity) would be a lot of clouds, storms, and the night-side would get cold.
At least that's what I think.
$endgroup$
It would take serious artistic license to exist, but...
I do not believe a planet could naturally evolve into this state. The problem isn't actually pressure. People assume that the further down you go, the more pressure there is. It's true to an extent, but the closer to the center you get the less you experience gravity (zero gravity at the center!). Pressure is something that makes sense when you're talking about the crust or rigid mantle. But if it applied to the liquid core, every crack in the mantle would result in massive eruptions — but they don't.
On the other hand, what you do get is heat. We don't really have proof of what's at the center of our planet, but a century of science has given us some really good guesses. We guess that there's a solid core. It's spinning at a different speed compared to the crust. Everything in the middle is subject to tremendous friction. Result = super heated rock. We think.
From the perspective of "solid stuff slowly combines via gravity over bazillions of years until some fool stamps his feet and says, 'let's call it a planet,'" this model works very well — but it doesn't explain where water comes from and that's actually been something scientists have pondered for a long time.
So, let's pretend that your world started as a honking lot of water orbiting a newly forming star and it starts to gather via gravity...
Why not? It's your world. From this perspective your world has a very, very low average density. There may still be a solid core of stuff (almost everything sinks through water, which is a better than average argument against this, unless there's a honking lot of water) but the middle isn't molten rock, it's super heated water.
And when the crust breaks, what you get is steam.
The crust is similar to a Roman arch — it's all spun out such that the bedrock is very, very flat and uniform. There would be no mountains — no plate tectonics to speak of — hot water, unlike magma, doesn't have the mass to push the surface around, which means earthquakes are caused by the heating/cooling cycle of the sun and occur most often at what we would call the tropics of cancer and capricorn (latitudes of highest thermal gradient between the poles and the equator).
This has the potential of meaning a lot of aquifers, but I'm having trouble keeping the land a desert. Water + sunlight = life. It would have to be a closer-to-the-sun planet such that the heat would burn off the water and the life. The consequence (thanks to the humidity) would be a lot of clouds, storms, and the night-side would get cold.
At least that's what I think.
answered 40 secs ago
JBHJBH
41.9k592202
41.9k592202
add a comment |
add a comment |
Thanks for contributing an answer to Worldbuilding Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fworldbuilding.stackexchange.com%2fquestions%2f137186%2fcould-a-terrestrial-planet-have-water-for-a-core%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown