Transformation of random variables and joint distributions












6












$begingroup$


Given a variable $y_i$, normally distributed with 0 mean and $σ_y$ standard deviation



$y_i$ ~ NormalDistribution[0,$σ_y$ ]



I want to obtain with Mathematica:




  1. The distribution of:
    $x = bar{y} = frac {sum_{i=1}^ny_i}{n}$


  2. The joint distribution of $ (x,y_i )$











share|improve this question









New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 5




    $begingroup$
    What have you tried? For example, have you seen the documentation on TransformedDistribution and ProbabilityDistribution?
    $endgroup$
    – JimB
    2 days ago










  • $begingroup$
    @JimB . I tried this TransformedDistribution[Sum[y, {i, n}]/n, y [Distributed] NormalDistribution[0, [Sigma]y]]. The result is NormalDistribution[0, [Sigma]y]. However, the correct result should be NormalDistribution[0, [Sigma]y / Sqrt[n]]
    $endgroup$
    – Andrea2810
    2 days ago








  • 1




    $begingroup$
    You need to "index" the variable y or else Mathematica thinks it is a single variable.
    $endgroup$
    – JimB
    2 days ago
















6












$begingroup$


Given a variable $y_i$, normally distributed with 0 mean and $σ_y$ standard deviation



$y_i$ ~ NormalDistribution[0,$σ_y$ ]



I want to obtain with Mathematica:




  1. The distribution of:
    $x = bar{y} = frac {sum_{i=1}^ny_i}{n}$


  2. The joint distribution of $ (x,y_i )$











share|improve this question









New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 5




    $begingroup$
    What have you tried? For example, have you seen the documentation on TransformedDistribution and ProbabilityDistribution?
    $endgroup$
    – JimB
    2 days ago










  • $begingroup$
    @JimB . I tried this TransformedDistribution[Sum[y, {i, n}]/n, y [Distributed] NormalDistribution[0, [Sigma]y]]. The result is NormalDistribution[0, [Sigma]y]. However, the correct result should be NormalDistribution[0, [Sigma]y / Sqrt[n]]
    $endgroup$
    – Andrea2810
    2 days ago








  • 1




    $begingroup$
    You need to "index" the variable y or else Mathematica thinks it is a single variable.
    $endgroup$
    – JimB
    2 days ago














6












6








6


2



$begingroup$


Given a variable $y_i$, normally distributed with 0 mean and $σ_y$ standard deviation



$y_i$ ~ NormalDistribution[0,$σ_y$ ]



I want to obtain with Mathematica:




  1. The distribution of:
    $x = bar{y} = frac {sum_{i=1}^ny_i}{n}$


  2. The joint distribution of $ (x,y_i )$











share|improve this question









New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Given a variable $y_i$, normally distributed with 0 mean and $σ_y$ standard deviation



$y_i$ ~ NormalDistribution[0,$σ_y$ ]



I want to obtain with Mathematica:




  1. The distribution of:
    $x = bar{y} = frac {sum_{i=1}^ny_i}{n}$


  2. The joint distribution of $ (x,y_i )$








probability-or-statistics distributions






share|improve this question









New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited yesterday









J. M. is slightly pensive

98.5k10309466




98.5k10309466






New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 days ago









Andrea2810Andrea2810

334




334




New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 5




    $begingroup$
    What have you tried? For example, have you seen the documentation on TransformedDistribution and ProbabilityDistribution?
    $endgroup$
    – JimB
    2 days ago










  • $begingroup$
    @JimB . I tried this TransformedDistribution[Sum[y, {i, n}]/n, y [Distributed] NormalDistribution[0, [Sigma]y]]. The result is NormalDistribution[0, [Sigma]y]. However, the correct result should be NormalDistribution[0, [Sigma]y / Sqrt[n]]
    $endgroup$
    – Andrea2810
    2 days ago








  • 1




    $begingroup$
    You need to "index" the variable y or else Mathematica thinks it is a single variable.
    $endgroup$
    – JimB
    2 days ago














  • 5




    $begingroup$
    What have you tried? For example, have you seen the documentation on TransformedDistribution and ProbabilityDistribution?
    $endgroup$
    – JimB
    2 days ago










  • $begingroup$
    @JimB . I tried this TransformedDistribution[Sum[y, {i, n}]/n, y [Distributed] NormalDistribution[0, [Sigma]y]]. The result is NormalDistribution[0, [Sigma]y]. However, the correct result should be NormalDistribution[0, [Sigma]y / Sqrt[n]]
    $endgroup$
    – Andrea2810
    2 days ago








  • 1




    $begingroup$
    You need to "index" the variable y or else Mathematica thinks it is a single variable.
    $endgroup$
    – JimB
    2 days ago








5




5




$begingroup$
What have you tried? For example, have you seen the documentation on TransformedDistribution and ProbabilityDistribution?
$endgroup$
– JimB
2 days ago




$begingroup$
What have you tried? For example, have you seen the documentation on TransformedDistribution and ProbabilityDistribution?
$endgroup$
– JimB
2 days ago












$begingroup$
@JimB . I tried this TransformedDistribution[Sum[y, {i, n}]/n, y [Distributed] NormalDistribution[0, [Sigma]y]]. The result is NormalDistribution[0, [Sigma]y]. However, the correct result should be NormalDistribution[0, [Sigma]y / Sqrt[n]]
$endgroup$
– Andrea2810
2 days ago






$begingroup$
@JimB . I tried this TransformedDistribution[Sum[y, {i, n}]/n, y [Distributed] NormalDistribution[0, [Sigma]y]]. The result is NormalDistribution[0, [Sigma]y]. However, the correct result should be NormalDistribution[0, [Sigma]y / Sqrt[n]]
$endgroup$
– Andrea2810
2 days ago






1




1




$begingroup$
You need to "index" the variable y or else Mathematica thinks it is a single variable.
$endgroup$
– JimB
2 days ago




$begingroup$
You need to "index" the variable y or else Mathematica thinks it is a single variable.
$endgroup$
– JimB
2 days ago










3 Answers
3






active

oldest

votes


















9












$begingroup$

I don't know how to get Mathematica to get the joint distribution explicitly for a general value of $n$ but here is how one can easily see the pattern to figure out the general solution.



First the distribution of the mean:



marginalDistribution = TransformedDistribution[Sum[y[i], {i, n}]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], {i, n}],
Assumptions -> [Sigma] > 0]
{#, marginalDistribution/.n->#} &/@Range[2,10]


$$
begin{array}{cc}
2 & text{NormalDistribution}left[0,frac{sigma }{sqrt{2}}right] \
3 & text{NormalDistribution}left[0,frac{sigma }{sqrt{3}}right] \
4 & text{NormalDistribution}left[0,frac{sigma }{2}right] \
5 & text{NormalDistribution}left[0,frac{sigma }{sqrt{5}}right] \
6 & text{NormalDistribution}left[0,frac{sigma }{sqrt{6}}right] \
7 & text{NormalDistribution}left[0,frac{sigma }{sqrt{7}}right] \
8 & text{NormalDistribution}left[0,frac{sigma }{2 sqrt{2}}right] \
9 & text{NormalDistribution}left[0,frac{sigma }{3}right] \
10 & text{NormalDistribution}left[0,frac{sigma }{sqrt{10}}right] \
end{array}
$$



So we see that the marginal distribution of $bar{y}$ is



NormalDistribution[0, σ/Sqrt[n]]


The joint distribution of $bar{y}$ and, say, $y_1$ is given by



jointDistribution = TransformedDistribution[{y[1], Sum[y[i], {i, n}]/n}, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], {i, n}]]
{#, jointDistribution /. n -> #} & /@ Range[2, 10] // TableForm


$$
begin{array}{cc}
2 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{2} \
frac{sigma ^2}{2} & frac{sigma ^2}{2} \
end{array}
right)right] \
3 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{3} \
frac{sigma ^2}{3} & frac{sigma ^2}{3} \
end{array}
right)right] \
4 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{4} \
frac{sigma ^2}{4} & frac{sigma ^2}{4} \
end{array}
right)right] \
5 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{5} \
frac{sigma ^2}{5} & frac{sigma ^2}{5} \
end{array}
right)right] \
6 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{6} \
frac{sigma ^2}{6} & frac{sigma ^2}{6} \
end{array}
right)right] \
7 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{7} \
frac{sigma ^2}{7} & frac{sigma ^2}{7} \
end{array}
right)right] \
8 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{8} \
frac{sigma ^2}{8} & frac{sigma ^2}{8} \
end{array}
right)right] \
9 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{9} \
frac{sigma ^2}{9} & frac{sigma ^2}{9} \
end{array}
right)right] \
10 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{10} \
frac{sigma ^2}{10} & frac{sigma ^2}{10} \
end{array}
right)right] \
end{array}
$$



So the general distribution is a multivariate normal



MultinormalDistribution[{0, 0}, {{σ^2, σ^2/n}, {σ^2/n, σ^2/n}}]


The general form of the joint density function can then be found with



FullSimplify[PDF[MultinormalDistribution[{0, 0}, {{σ^2, σ^2/n}, {σ^2/n, σ^2/n}}], {y, ybar}],
Assumptions -> {σ > 0, n > 1}]


$$frac{n e^{-frac{n left(n text{ybar}^2+y^2-2 y text{ybar}right)}{2 (n-1) sigma ^2}}}{2 pi sqrt{n-1} sigma ^2}$$






share|improve this answer











$endgroup$













  • $begingroup$
    Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
    $endgroup$
    – mjw
    2 days ago












  • $begingroup$
    @mjw Good. Answers should always be scrutinized and challenged if desired.
    $endgroup$
    – JimB
    2 days ago












  • $begingroup$
    Nice! In addition to trying to understand the technique, I checked the marginal integrals. Looks great!
    $endgroup$
    – mjw
    2 days ago



















1












$begingroup$

Here is the distribution of $x=overline{y}$ (Part I of your question):



a[n_] := Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], {k, 1, n}]; 
p[n_] := TransformedDistribution[Sum[y[k]/n, {k, n}], a[n]];


Now



x [Distributed] p[5] (* n=5, for example *)


The result is



x [Distributed] NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]





share|improve this answer











$endgroup$













  • $begingroup$
    I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, {k, 5}], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
    $endgroup$
    – Andrea2810
    2 days ago












  • $begingroup$
    Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
    $endgroup$
    – mjw
    2 days ago












  • $begingroup$
    Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs around $sigma$. Obviously, $sigma>0$.
    $endgroup$
    – mjw
    2 days ago










  • $begingroup$
    Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
    $endgroup$
    – Andrea2810
    2 days ago










  • $begingroup$
    a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], {k, 1, n}];
    $endgroup$
    – mjw
    2 days ago





















0












$begingroup$

just modified @mjw's answer,



n = 100;(*for example*)ClearAll[y]; 
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], {k, 1, n}];
meanDist = TransformedDistribution[Sum[y[k]/100, {k, 100}], a]


JointDistribution can be composed by ProductDistribution,
if these random variables are independent.

if not,you have to use Copula



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
RandomVariate[joint, 100] // Histogram3D


enter image description here



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
m1 = RandomVariate[meanDist /. [Sigma] -> 1, {100000}];
m2 = RandomVariate[
Last@*List @@ Part[a, 1] /. [Sigma] -> 1, {100000}];
Correlation[Thread[List[m1, m2]]]
ListPlot[Thread[List[m1, m2]]]


=>



{{1., -0.00256777}, {-0.00256777, 1.}}


enter image description here

I'm not sure about correlation,but it's okay.






share|improve this answer











$endgroup$













  • $begingroup$
    I believe that the distributions are not independent. Since $overline{x}$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
    $endgroup$
    – mjw
    2 days ago










  • $begingroup$
    I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
    $endgroup$
    – mjw
    2 days ago










  • $begingroup$
    Exactly, the two variables are not independent unfortunately
    $endgroup$
    – Andrea2810
    2 days ago











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});






Andrea2810 is a new contributor. Be nice, and check out our Code of Conduct.










draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193876%2ftransformation-of-random-variables-and-joint-distributions%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























3 Answers
3






active

oldest

votes








3 Answers
3






active

oldest

votes









active

oldest

votes






active

oldest

votes









9












$begingroup$

I don't know how to get Mathematica to get the joint distribution explicitly for a general value of $n$ but here is how one can easily see the pattern to figure out the general solution.



First the distribution of the mean:



marginalDistribution = TransformedDistribution[Sum[y[i], {i, n}]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], {i, n}],
Assumptions -> [Sigma] > 0]
{#, marginalDistribution/.n->#} &/@Range[2,10]


$$
begin{array}{cc}
2 & text{NormalDistribution}left[0,frac{sigma }{sqrt{2}}right] \
3 & text{NormalDistribution}left[0,frac{sigma }{sqrt{3}}right] \
4 & text{NormalDistribution}left[0,frac{sigma }{2}right] \
5 & text{NormalDistribution}left[0,frac{sigma }{sqrt{5}}right] \
6 & text{NormalDistribution}left[0,frac{sigma }{sqrt{6}}right] \
7 & text{NormalDistribution}left[0,frac{sigma }{sqrt{7}}right] \
8 & text{NormalDistribution}left[0,frac{sigma }{2 sqrt{2}}right] \
9 & text{NormalDistribution}left[0,frac{sigma }{3}right] \
10 & text{NormalDistribution}left[0,frac{sigma }{sqrt{10}}right] \
end{array}
$$



So we see that the marginal distribution of $bar{y}$ is



NormalDistribution[0, σ/Sqrt[n]]


The joint distribution of $bar{y}$ and, say, $y_1$ is given by



jointDistribution = TransformedDistribution[{y[1], Sum[y[i], {i, n}]/n}, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], {i, n}]]
{#, jointDistribution /. n -> #} & /@ Range[2, 10] // TableForm


$$
begin{array}{cc}
2 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{2} \
frac{sigma ^2}{2} & frac{sigma ^2}{2} \
end{array}
right)right] \
3 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{3} \
frac{sigma ^2}{3} & frac{sigma ^2}{3} \
end{array}
right)right] \
4 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{4} \
frac{sigma ^2}{4} & frac{sigma ^2}{4} \
end{array}
right)right] \
5 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{5} \
frac{sigma ^2}{5} & frac{sigma ^2}{5} \
end{array}
right)right] \
6 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{6} \
frac{sigma ^2}{6} & frac{sigma ^2}{6} \
end{array}
right)right] \
7 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{7} \
frac{sigma ^2}{7} & frac{sigma ^2}{7} \
end{array}
right)right] \
8 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{8} \
frac{sigma ^2}{8} & frac{sigma ^2}{8} \
end{array}
right)right] \
9 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{9} \
frac{sigma ^2}{9} & frac{sigma ^2}{9} \
end{array}
right)right] \
10 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{10} \
frac{sigma ^2}{10} & frac{sigma ^2}{10} \
end{array}
right)right] \
end{array}
$$



So the general distribution is a multivariate normal



MultinormalDistribution[{0, 0}, {{σ^2, σ^2/n}, {σ^2/n, σ^2/n}}]


The general form of the joint density function can then be found with



FullSimplify[PDF[MultinormalDistribution[{0, 0}, {{σ^2, σ^2/n}, {σ^2/n, σ^2/n}}], {y, ybar}],
Assumptions -> {σ > 0, n > 1}]


$$frac{n e^{-frac{n left(n text{ybar}^2+y^2-2 y text{ybar}right)}{2 (n-1) sigma ^2}}}{2 pi sqrt{n-1} sigma ^2}$$






share|improve this answer











$endgroup$













  • $begingroup$
    Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
    $endgroup$
    – mjw
    2 days ago












  • $begingroup$
    @mjw Good. Answers should always be scrutinized and challenged if desired.
    $endgroup$
    – JimB
    2 days ago












  • $begingroup$
    Nice! In addition to trying to understand the technique, I checked the marginal integrals. Looks great!
    $endgroup$
    – mjw
    2 days ago
















9












$begingroup$

I don't know how to get Mathematica to get the joint distribution explicitly for a general value of $n$ but here is how one can easily see the pattern to figure out the general solution.



First the distribution of the mean:



marginalDistribution = TransformedDistribution[Sum[y[i], {i, n}]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], {i, n}],
Assumptions -> [Sigma] > 0]
{#, marginalDistribution/.n->#} &/@Range[2,10]


$$
begin{array}{cc}
2 & text{NormalDistribution}left[0,frac{sigma }{sqrt{2}}right] \
3 & text{NormalDistribution}left[0,frac{sigma }{sqrt{3}}right] \
4 & text{NormalDistribution}left[0,frac{sigma }{2}right] \
5 & text{NormalDistribution}left[0,frac{sigma }{sqrt{5}}right] \
6 & text{NormalDistribution}left[0,frac{sigma }{sqrt{6}}right] \
7 & text{NormalDistribution}left[0,frac{sigma }{sqrt{7}}right] \
8 & text{NormalDistribution}left[0,frac{sigma }{2 sqrt{2}}right] \
9 & text{NormalDistribution}left[0,frac{sigma }{3}right] \
10 & text{NormalDistribution}left[0,frac{sigma }{sqrt{10}}right] \
end{array}
$$



So we see that the marginal distribution of $bar{y}$ is



NormalDistribution[0, σ/Sqrt[n]]


The joint distribution of $bar{y}$ and, say, $y_1$ is given by



jointDistribution = TransformedDistribution[{y[1], Sum[y[i], {i, n}]/n}, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], {i, n}]]
{#, jointDistribution /. n -> #} & /@ Range[2, 10] // TableForm


$$
begin{array}{cc}
2 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{2} \
frac{sigma ^2}{2} & frac{sigma ^2}{2} \
end{array}
right)right] \
3 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{3} \
frac{sigma ^2}{3} & frac{sigma ^2}{3} \
end{array}
right)right] \
4 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{4} \
frac{sigma ^2}{4} & frac{sigma ^2}{4} \
end{array}
right)right] \
5 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{5} \
frac{sigma ^2}{5} & frac{sigma ^2}{5} \
end{array}
right)right] \
6 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{6} \
frac{sigma ^2}{6} & frac{sigma ^2}{6} \
end{array}
right)right] \
7 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{7} \
frac{sigma ^2}{7} & frac{sigma ^2}{7} \
end{array}
right)right] \
8 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{8} \
frac{sigma ^2}{8} & frac{sigma ^2}{8} \
end{array}
right)right] \
9 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{9} \
frac{sigma ^2}{9} & frac{sigma ^2}{9} \
end{array}
right)right] \
10 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{10} \
frac{sigma ^2}{10} & frac{sigma ^2}{10} \
end{array}
right)right] \
end{array}
$$



So the general distribution is a multivariate normal



MultinormalDistribution[{0, 0}, {{σ^2, σ^2/n}, {σ^2/n, σ^2/n}}]


The general form of the joint density function can then be found with



FullSimplify[PDF[MultinormalDistribution[{0, 0}, {{σ^2, σ^2/n}, {σ^2/n, σ^2/n}}], {y, ybar}],
Assumptions -> {σ > 0, n > 1}]


$$frac{n e^{-frac{n left(n text{ybar}^2+y^2-2 y text{ybar}right)}{2 (n-1) sigma ^2}}}{2 pi sqrt{n-1} sigma ^2}$$






share|improve this answer











$endgroup$













  • $begingroup$
    Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
    $endgroup$
    – mjw
    2 days ago












  • $begingroup$
    @mjw Good. Answers should always be scrutinized and challenged if desired.
    $endgroup$
    – JimB
    2 days ago












  • $begingroup$
    Nice! In addition to trying to understand the technique, I checked the marginal integrals. Looks great!
    $endgroup$
    – mjw
    2 days ago














9












9








9





$begingroup$

I don't know how to get Mathematica to get the joint distribution explicitly for a general value of $n$ but here is how one can easily see the pattern to figure out the general solution.



First the distribution of the mean:



marginalDistribution = TransformedDistribution[Sum[y[i], {i, n}]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], {i, n}],
Assumptions -> [Sigma] > 0]
{#, marginalDistribution/.n->#} &/@Range[2,10]


$$
begin{array}{cc}
2 & text{NormalDistribution}left[0,frac{sigma }{sqrt{2}}right] \
3 & text{NormalDistribution}left[0,frac{sigma }{sqrt{3}}right] \
4 & text{NormalDistribution}left[0,frac{sigma }{2}right] \
5 & text{NormalDistribution}left[0,frac{sigma }{sqrt{5}}right] \
6 & text{NormalDistribution}left[0,frac{sigma }{sqrt{6}}right] \
7 & text{NormalDistribution}left[0,frac{sigma }{sqrt{7}}right] \
8 & text{NormalDistribution}left[0,frac{sigma }{2 sqrt{2}}right] \
9 & text{NormalDistribution}left[0,frac{sigma }{3}right] \
10 & text{NormalDistribution}left[0,frac{sigma }{sqrt{10}}right] \
end{array}
$$



So we see that the marginal distribution of $bar{y}$ is



NormalDistribution[0, σ/Sqrt[n]]


The joint distribution of $bar{y}$ and, say, $y_1$ is given by



jointDistribution = TransformedDistribution[{y[1], Sum[y[i], {i, n}]/n}, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], {i, n}]]
{#, jointDistribution /. n -> #} & /@ Range[2, 10] // TableForm


$$
begin{array}{cc}
2 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{2} \
frac{sigma ^2}{2} & frac{sigma ^2}{2} \
end{array}
right)right] \
3 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{3} \
frac{sigma ^2}{3} & frac{sigma ^2}{3} \
end{array}
right)right] \
4 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{4} \
frac{sigma ^2}{4} & frac{sigma ^2}{4} \
end{array}
right)right] \
5 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{5} \
frac{sigma ^2}{5} & frac{sigma ^2}{5} \
end{array}
right)right] \
6 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{6} \
frac{sigma ^2}{6} & frac{sigma ^2}{6} \
end{array}
right)right] \
7 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{7} \
frac{sigma ^2}{7} & frac{sigma ^2}{7} \
end{array}
right)right] \
8 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{8} \
frac{sigma ^2}{8} & frac{sigma ^2}{8} \
end{array}
right)right] \
9 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{9} \
frac{sigma ^2}{9} & frac{sigma ^2}{9} \
end{array}
right)right] \
10 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{10} \
frac{sigma ^2}{10} & frac{sigma ^2}{10} \
end{array}
right)right] \
end{array}
$$



So the general distribution is a multivariate normal



MultinormalDistribution[{0, 0}, {{σ^2, σ^2/n}, {σ^2/n, σ^2/n}}]


The general form of the joint density function can then be found with



FullSimplify[PDF[MultinormalDistribution[{0, 0}, {{σ^2, σ^2/n}, {σ^2/n, σ^2/n}}], {y, ybar}],
Assumptions -> {σ > 0, n > 1}]


$$frac{n e^{-frac{n left(n text{ybar}^2+y^2-2 y text{ybar}right)}{2 (n-1) sigma ^2}}}{2 pi sqrt{n-1} sigma ^2}$$






share|improve this answer











$endgroup$



I don't know how to get Mathematica to get the joint distribution explicitly for a general value of $n$ but here is how one can easily see the pattern to figure out the general solution.



First the distribution of the mean:



marginalDistribution = TransformedDistribution[Sum[y[i], {i, n}]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], {i, n}],
Assumptions -> [Sigma] > 0]
{#, marginalDistribution/.n->#} &/@Range[2,10]


$$
begin{array}{cc}
2 & text{NormalDistribution}left[0,frac{sigma }{sqrt{2}}right] \
3 & text{NormalDistribution}left[0,frac{sigma }{sqrt{3}}right] \
4 & text{NormalDistribution}left[0,frac{sigma }{2}right] \
5 & text{NormalDistribution}left[0,frac{sigma }{sqrt{5}}right] \
6 & text{NormalDistribution}left[0,frac{sigma }{sqrt{6}}right] \
7 & text{NormalDistribution}left[0,frac{sigma }{sqrt{7}}right] \
8 & text{NormalDistribution}left[0,frac{sigma }{2 sqrt{2}}right] \
9 & text{NormalDistribution}left[0,frac{sigma }{3}right] \
10 & text{NormalDistribution}left[0,frac{sigma }{sqrt{10}}right] \
end{array}
$$



So we see that the marginal distribution of $bar{y}$ is



NormalDistribution[0, σ/Sqrt[n]]


The joint distribution of $bar{y}$ and, say, $y_1$ is given by



jointDistribution = TransformedDistribution[{y[1], Sum[y[i], {i, n}]/n}, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], {i, n}]]
{#, jointDistribution /. n -> #} & /@ Range[2, 10] // TableForm


$$
begin{array}{cc}
2 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{2} \
frac{sigma ^2}{2} & frac{sigma ^2}{2} \
end{array}
right)right] \
3 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{3} \
frac{sigma ^2}{3} & frac{sigma ^2}{3} \
end{array}
right)right] \
4 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{4} \
frac{sigma ^2}{4} & frac{sigma ^2}{4} \
end{array}
right)right] \
5 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{5} \
frac{sigma ^2}{5} & frac{sigma ^2}{5} \
end{array}
right)right] \
6 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{6} \
frac{sigma ^2}{6} & frac{sigma ^2}{6} \
end{array}
right)right] \
7 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{7} \
frac{sigma ^2}{7} & frac{sigma ^2}{7} \
end{array}
right)right] \
8 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{8} \
frac{sigma ^2}{8} & frac{sigma ^2}{8} \
end{array}
right)right] \
9 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{9} \
frac{sigma ^2}{9} & frac{sigma ^2}{9} \
end{array}
right)right] \
10 & text{MultinormalDistribution}left[{0,0},left(
begin{array}{cc}
sigma ^2 & frac{sigma ^2}{10} \
frac{sigma ^2}{10} & frac{sigma ^2}{10} \
end{array}
right)right] \
end{array}
$$



So the general distribution is a multivariate normal



MultinormalDistribution[{0, 0}, {{σ^2, σ^2/n}, {σ^2/n, σ^2/n}}]


The general form of the joint density function can then be found with



FullSimplify[PDF[MultinormalDistribution[{0, 0}, {{σ^2, σ^2/n}, {σ^2/n, σ^2/n}}], {y, ybar}],
Assumptions -> {σ > 0, n > 1}]


$$frac{n e^{-frac{n left(n text{ybar}^2+y^2-2 y text{ybar}right)}{2 (n-1) sigma ^2}}}{2 pi sqrt{n-1} sigma ^2}$$







share|improve this answer














share|improve this answer



share|improve this answer








edited 2 days ago

























answered 2 days ago









JimBJimB

18.2k12863




18.2k12863












  • $begingroup$
    Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
    $endgroup$
    – mjw
    2 days ago












  • $begingroup$
    @mjw Good. Answers should always be scrutinized and challenged if desired.
    $endgroup$
    – JimB
    2 days ago












  • $begingroup$
    Nice! In addition to trying to understand the technique, I checked the marginal integrals. Looks great!
    $endgroup$
    – mjw
    2 days ago


















  • $begingroup$
    Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
    $endgroup$
    – mjw
    2 days ago












  • $begingroup$
    @mjw Good. Answers should always be scrutinized and challenged if desired.
    $endgroup$
    – JimB
    2 days ago












  • $begingroup$
    Nice! In addition to trying to understand the technique, I checked the marginal integrals. Looks great!
    $endgroup$
    – mjw
    2 days ago
















$begingroup$
Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
$endgroup$
– mjw
2 days ago






$begingroup$
Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
$endgroup$
– mjw
2 days ago














$begingroup$
@mjw Good. Answers should always be scrutinized and challenged if desired.
$endgroup$
– JimB
2 days ago






$begingroup$
@mjw Good. Answers should always be scrutinized and challenged if desired.
$endgroup$
– JimB
2 days ago














$begingroup$
Nice! In addition to trying to understand the technique, I checked the marginal integrals. Looks great!
$endgroup$
– mjw
2 days ago




$begingroup$
Nice! In addition to trying to understand the technique, I checked the marginal integrals. Looks great!
$endgroup$
– mjw
2 days ago











1












$begingroup$

Here is the distribution of $x=overline{y}$ (Part I of your question):



a[n_] := Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], {k, 1, n}]; 
p[n_] := TransformedDistribution[Sum[y[k]/n, {k, n}], a[n]];


Now



x [Distributed] p[5] (* n=5, for example *)


The result is



x [Distributed] NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]





share|improve this answer











$endgroup$













  • $begingroup$
    I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, {k, 5}], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
    $endgroup$
    – Andrea2810
    2 days ago












  • $begingroup$
    Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
    $endgroup$
    – mjw
    2 days ago












  • $begingroup$
    Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs around $sigma$. Obviously, $sigma>0$.
    $endgroup$
    – mjw
    2 days ago










  • $begingroup$
    Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
    $endgroup$
    – Andrea2810
    2 days ago










  • $begingroup$
    a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], {k, 1, n}];
    $endgroup$
    – mjw
    2 days ago


















1












$begingroup$

Here is the distribution of $x=overline{y}$ (Part I of your question):



a[n_] := Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], {k, 1, n}]; 
p[n_] := TransformedDistribution[Sum[y[k]/n, {k, n}], a[n]];


Now



x [Distributed] p[5] (* n=5, for example *)


The result is



x [Distributed] NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]





share|improve this answer











$endgroup$













  • $begingroup$
    I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, {k, 5}], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
    $endgroup$
    – Andrea2810
    2 days ago












  • $begingroup$
    Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
    $endgroup$
    – mjw
    2 days ago












  • $begingroup$
    Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs around $sigma$. Obviously, $sigma>0$.
    $endgroup$
    – mjw
    2 days ago










  • $begingroup$
    Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
    $endgroup$
    – Andrea2810
    2 days ago










  • $begingroup$
    a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], {k, 1, n}];
    $endgroup$
    – mjw
    2 days ago
















1












1








1





$begingroup$

Here is the distribution of $x=overline{y}$ (Part I of your question):



a[n_] := Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], {k, 1, n}]; 
p[n_] := TransformedDistribution[Sum[y[k]/n, {k, n}], a[n]];


Now



x [Distributed] p[5] (* n=5, for example *)


The result is



x [Distributed] NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]





share|improve this answer











$endgroup$



Here is the distribution of $x=overline{y}$ (Part I of your question):



a[n_] := Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], {k, 1, n}]; 
p[n_] := TransformedDistribution[Sum[y[k]/n, {k, n}], a[n]];


Now



x [Distributed] p[5] (* n=5, for example *)


The result is



x [Distributed] NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]






share|improve this answer














share|improve this answer



share|improve this answer








edited 2 days ago

























answered 2 days ago









mjwmjw

1,03710




1,03710












  • $begingroup$
    I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, {k, 5}], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
    $endgroup$
    – Andrea2810
    2 days ago












  • $begingroup$
    Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
    $endgroup$
    – mjw
    2 days ago












  • $begingroup$
    Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs around $sigma$. Obviously, $sigma>0$.
    $endgroup$
    – mjw
    2 days ago










  • $begingroup$
    Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
    $endgroup$
    – Andrea2810
    2 days ago










  • $begingroup$
    a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], {k, 1, n}];
    $endgroup$
    – mjw
    2 days ago




















  • $begingroup$
    I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, {k, 5}], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
    $endgroup$
    – Andrea2810
    2 days ago












  • $begingroup$
    Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
    $endgroup$
    – mjw
    2 days ago












  • $begingroup$
    Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs around $sigma$. Obviously, $sigma>0$.
    $endgroup$
    – mjw
    2 days ago










  • $begingroup$
    Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
    $endgroup$
    – Andrea2810
    2 days ago










  • $begingroup$
    a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], {k, 1, n}];
    $endgroup$
    – mjw
    2 days ago


















$begingroup$
I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, {k, 5}], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
$endgroup$
– Andrea2810
2 days ago






$begingroup$
I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, {k, 5}], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
$endgroup$
– Andrea2810
2 days ago














$begingroup$
Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
$endgroup$
– mjw
2 days ago






$begingroup$
Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
$endgroup$
– mjw
2 days ago














$begingroup$
Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs around $sigma$. Obviously, $sigma>0$.
$endgroup$
– mjw
2 days ago




$begingroup$
Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs around $sigma$. Obviously, $sigma>0$.
$endgroup$
– mjw
2 days ago












$begingroup$
Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
$endgroup$
– Andrea2810
2 days ago




$begingroup$
Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
$endgroup$
– Andrea2810
2 days ago












$begingroup$
a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], {k, 1, n}];
$endgroup$
– mjw
2 days ago






$begingroup$
a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], {k, 1, n}];
$endgroup$
– mjw
2 days ago













0












$begingroup$

just modified @mjw's answer,



n = 100;(*for example*)ClearAll[y]; 
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], {k, 1, n}];
meanDist = TransformedDistribution[Sum[y[k]/100, {k, 100}], a]


JointDistribution can be composed by ProductDistribution,
if these random variables are independent.

if not,you have to use Copula



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
RandomVariate[joint, 100] // Histogram3D


enter image description here



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
m1 = RandomVariate[meanDist /. [Sigma] -> 1, {100000}];
m2 = RandomVariate[
Last@*List @@ Part[a, 1] /. [Sigma] -> 1, {100000}];
Correlation[Thread[List[m1, m2]]]
ListPlot[Thread[List[m1, m2]]]


=>



{{1., -0.00256777}, {-0.00256777, 1.}}


enter image description here

I'm not sure about correlation,but it's okay.






share|improve this answer











$endgroup$













  • $begingroup$
    I believe that the distributions are not independent. Since $overline{x}$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
    $endgroup$
    – mjw
    2 days ago










  • $begingroup$
    I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
    $endgroup$
    – mjw
    2 days ago










  • $begingroup$
    Exactly, the two variables are not independent unfortunately
    $endgroup$
    – Andrea2810
    2 days ago
















0












$begingroup$

just modified @mjw's answer,



n = 100;(*for example*)ClearAll[y]; 
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], {k, 1, n}];
meanDist = TransformedDistribution[Sum[y[k]/100, {k, 100}], a]


JointDistribution can be composed by ProductDistribution,
if these random variables are independent.

if not,you have to use Copula



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
RandomVariate[joint, 100] // Histogram3D


enter image description here



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
m1 = RandomVariate[meanDist /. [Sigma] -> 1, {100000}];
m2 = RandomVariate[
Last@*List @@ Part[a, 1] /. [Sigma] -> 1, {100000}];
Correlation[Thread[List[m1, m2]]]
ListPlot[Thread[List[m1, m2]]]


=>



{{1., -0.00256777}, {-0.00256777, 1.}}


enter image description here

I'm not sure about correlation,but it's okay.






share|improve this answer











$endgroup$













  • $begingroup$
    I believe that the distributions are not independent. Since $overline{x}$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
    $endgroup$
    – mjw
    2 days ago










  • $begingroup$
    I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
    $endgroup$
    – mjw
    2 days ago










  • $begingroup$
    Exactly, the two variables are not independent unfortunately
    $endgroup$
    – Andrea2810
    2 days ago














0












0








0





$begingroup$

just modified @mjw's answer,



n = 100;(*for example*)ClearAll[y]; 
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], {k, 1, n}];
meanDist = TransformedDistribution[Sum[y[k]/100, {k, 100}], a]


JointDistribution can be composed by ProductDistribution,
if these random variables are independent.

if not,you have to use Copula



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
RandomVariate[joint, 100] // Histogram3D


enter image description here



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
m1 = RandomVariate[meanDist /. [Sigma] -> 1, {100000}];
m2 = RandomVariate[
Last@*List @@ Part[a, 1] /. [Sigma] -> 1, {100000}];
Correlation[Thread[List[m1, m2]]]
ListPlot[Thread[List[m1, m2]]]


=>



{{1., -0.00256777}, {-0.00256777, 1.}}


enter image description here

I'm not sure about correlation,but it's okay.






share|improve this answer











$endgroup$



just modified @mjw's answer,



n = 100;(*for example*)ClearAll[y]; 
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], {k, 1, n}];
meanDist = TransformedDistribution[Sum[y[k]/100, {k, 100}], a]


JointDistribution can be composed by ProductDistribution,
if these random variables are independent.

if not,you have to use Copula



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
RandomVariate[joint, 100] // Histogram3D


enter image description here



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
m1 = RandomVariate[meanDist /. [Sigma] -> 1, {100000}];
m2 = RandomVariate[
Last@*List @@ Part[a, 1] /. [Sigma] -> 1, {100000}];
Correlation[Thread[List[m1, m2]]]
ListPlot[Thread[List[m1, m2]]]


=>



{{1., -0.00256777}, {-0.00256777, 1.}}


enter image description here

I'm not sure about correlation,but it's okay.







share|improve this answer














share|improve this answer



share|improve this answer








edited 2 days ago

























answered 2 days ago









XminerXminer

33818




33818












  • $begingroup$
    I believe that the distributions are not independent. Since $overline{x}$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
    $endgroup$
    – mjw
    2 days ago










  • $begingroup$
    I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
    $endgroup$
    – mjw
    2 days ago










  • $begingroup$
    Exactly, the two variables are not independent unfortunately
    $endgroup$
    – Andrea2810
    2 days ago


















  • $begingroup$
    I believe that the distributions are not independent. Since $overline{x}$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
    $endgroup$
    – mjw
    2 days ago










  • $begingroup$
    I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
    $endgroup$
    – mjw
    2 days ago










  • $begingroup$
    Exactly, the two variables are not independent unfortunately
    $endgroup$
    – Andrea2810
    2 days ago
















$begingroup$
I believe that the distributions are not independent. Since $overline{x}$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
$endgroup$
– mjw
2 days ago




$begingroup$
I believe that the distributions are not independent. Since $overline{x}$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
$endgroup$
– mjw
2 days ago












$begingroup$
I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
$endgroup$
– mjw
2 days ago




$begingroup$
I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
$endgroup$
– mjw
2 days ago












$begingroup$
Exactly, the two variables are not independent unfortunately
$endgroup$
– Andrea2810
2 days ago




$begingroup$
Exactly, the two variables are not independent unfortunately
$endgroup$
– Andrea2810
2 days ago










Andrea2810 is a new contributor. Be nice, and check out our Code of Conduct.










draft saved

draft discarded


















Andrea2810 is a new contributor. Be nice, and check out our Code of Conduct.













Andrea2810 is a new contributor. Be nice, and check out our Code of Conduct.












Andrea2810 is a new contributor. Be nice, and check out our Code of Conduct.
















Thanks for contributing an answer to Mathematica Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193876%2ftransformation-of-random-variables-and-joint-distributions%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

數位音樂下載

When can things happen in Etherscan, such as the picture below?

格利澤436b