Banach space and Hilbert space topology
$begingroup$
Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.
However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?
general-topology functional-analysis hilbert-spaces banach-spaces
$endgroup$
add a comment |
$begingroup$
Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.
However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?
general-topology functional-analysis hilbert-spaces banach-spaces
$endgroup$
1
$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
Apr 7 at 21:35
1
$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
Apr 7 at 21:37
add a comment |
$begingroup$
Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.
However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?
general-topology functional-analysis hilbert-spaces banach-spaces
$endgroup$
Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.
However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?
general-topology functional-analysis hilbert-spaces banach-spaces
general-topology functional-analysis hilbert-spaces banach-spaces
edited Apr 7 at 21:37
Henno Brandsma
116k349127
116k349127
asked Apr 7 at 21:30
user156213user156213
69238
69238
1
$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
Apr 7 at 21:35
1
$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
Apr 7 at 21:37
add a comment |
1
$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
Apr 7 at 21:35
1
$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
Apr 7 at 21:37
1
1
$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
Apr 7 at 21:35
$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
Apr 7 at 21:35
1
1
$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
Apr 7 at 21:37
$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
Apr 7 at 21:37
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.
So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbb{R}^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbb{R}^n$ up to homeomorphism, which are already Hilbert spaces.
$endgroup$
$begingroup$
Do you know of a reference with the proof of this?
$endgroup$
– user156213
Apr 8 at 0:22
2
$begingroup$
@user156213 This post has a reference.
$endgroup$
– David Mitra
2 days ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178808%2fbanach-space-and-hilbert-space-topology%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.
So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbb{R}^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbb{R}^n$ up to homeomorphism, which are already Hilbert spaces.
$endgroup$
$begingroup$
Do you know of a reference with the proof of this?
$endgroup$
– user156213
Apr 8 at 0:22
2
$begingroup$
@user156213 This post has a reference.
$endgroup$
– David Mitra
2 days ago
add a comment |
$begingroup$
Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.
So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbb{R}^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbb{R}^n$ up to homeomorphism, which are already Hilbert spaces.
$endgroup$
$begingroup$
Do you know of a reference with the proof of this?
$endgroup$
– user156213
Apr 8 at 0:22
2
$begingroup$
@user156213 This post has a reference.
$endgroup$
– David Mitra
2 days ago
add a comment |
$begingroup$
Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.
So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbb{R}^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbb{R}^n$ up to homeomorphism, which are already Hilbert spaces.
$endgroup$
Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.
So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbb{R}^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbb{R}^n$ up to homeomorphism, which are already Hilbert spaces.
answered Apr 7 at 21:36
Henno BrandsmaHenno Brandsma
116k349127
116k349127
$begingroup$
Do you know of a reference with the proof of this?
$endgroup$
– user156213
Apr 8 at 0:22
2
$begingroup$
@user156213 This post has a reference.
$endgroup$
– David Mitra
2 days ago
add a comment |
$begingroup$
Do you know of a reference with the proof of this?
$endgroup$
– user156213
Apr 8 at 0:22
2
$begingroup$
@user156213 This post has a reference.
$endgroup$
– David Mitra
2 days ago
$begingroup$
Do you know of a reference with the proof of this?
$endgroup$
– user156213
Apr 8 at 0:22
$begingroup$
Do you know of a reference with the proof of this?
$endgroup$
– user156213
Apr 8 at 0:22
2
2
$begingroup$
@user156213 This post has a reference.
$endgroup$
– David Mitra
2 days ago
$begingroup$
@user156213 This post has a reference.
$endgroup$
– David Mitra
2 days ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178808%2fbanach-space-and-hilbert-space-topology%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
Apr 7 at 21:35
1
$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
Apr 7 at 21:37