on javascript trying to run ECDSA code but it's showing me:(node:8907) [DEP0005] DeprecationWarning
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ margin-bottom:0;
}
var createHmac = require('create-hmac')
var typeforce = require('typeforce')
var types = require('./types')
var BigInteger = require('bigi')
var ECSignature = require('./ecsignature')
var ZERO = new Buffer([0])
var ONE = new Buffer([1])
var ecurve = require('ecurve')
var secp256k1 = ecurve.getCurveByName('secp256k1')
function deterministicGenerateK (hash, x, checkSig) {
typeforce(types.tuple(
types.Hash256bit,
types.Buffer256bit,
types.Function
), arguments)
var k = new Buffer(32)
var v = new Buffer(32)
// Step A, ignored as hash already provided
// Step B
v.fill(1)
// Step C
k.fill(0)
// Step D
k = createHmac('sha256', k)
.update(v)
.update(ZERO)
.update(x)
.update(hash)
.digest()
// Step E
v = createHmac('sha256', k).update(v).digest()
// Step F
k = createHmac('sha256', k)
.update(v)
.update(ONE)
.update(x)
.update(hash)
.digest()
// Step G
v = createHmac('sha256', k).update(v).digest()
// Step H1/H2a, ignored as tlen === qlen (256 bit)
// Step H2b
v = createHmac('sha256', k).update(v).digest()
var T = BigInteger.fromBuffer(v)
// Step H3, repeat until T is within the interval [1, n - 1] and is suitable for ECDSA
while (T.signum() <= 0 || T.compareTo(secp256k1.n) >= 0 || !checkSig(T)) {
k = createHmac('sha256', k)
.update(v)
.update(ZERO)
.digest()
v = createHmac('sha256', k).update(v).digest()
// Step H1/H2a, again, ignored as tlen === qlen (256 bit)
// Step H2b again
v = createHmac('sha256', k).update(v).digest()
T = BigInteger.fromBuffer(v)
}
return T
}
var N_OVER_TWO = secp256k1.n.shiftRight(1)
function sign (hash, d) {
typeforce(types.tuple(types.Hash256bit, types.BigInt), arguments)
var x = d.toBuffer(32)
var e = BigInteger.fromBuffer(hash)
var n = secp256k1.n
var G = secp256k1.G
var r, s
deterministicGenerateK(hash, x, function (k) {
var Q = G.multiply(k)
if (secp256k1.isInfinity(Q)) return false
r = Q.affineX.mod(n)
if (r.signum() === 0) return false
s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n)
if (s.signum() === 0) return false
return true
})
// enforce low S values, see bip62: 'low s values in signatures'
if (s.compareTo(N_OVER_TWO) > 0) {
s = n.subtract(s)
}
return new ECSignature(r, s)
}
function verify (hash, signature, Q) {
typeforce(types.tuple(
types.Hash256bit,
types.ECSignature,
types.ECPoint
), arguments)
var n = secp256k1.n
var G = secp256k1.G
var r = signature.r
var s = signature.s
// 1.4.1 Enforce r and s are both integers in the interval [1, n − 1]
if (r.signum() <= 0 || r.compareTo(n) >= 0) return false
if (s.signum() <= 0 || s.compareTo(n) >= 0) return false
// 1.4.2 H = Hash(M), already done by the user
// 1.4.3 e = H
var e = BigInteger.fromBuffer(hash)
// Compute s^-1
var sInv = s.modInverse(n)
// 1.4.4 Compute u1 = es^−1 mod n
// u2 = rs^−1 mod n
var u1 = e.multiply(sInv).mod(n)
var u2 = r.multiply(sInv).mod(n)
// 1.4.5 Compute R = (xR, yR)
// R = u1G + u2Q
var R = G.multiplyTwo(u1, Q, u2)
// 1.4.5 (cont.) Enforce R is not at infinity
if (secp256k1.isInfinity(R)) return false
// 1.4.6 Convert the field element R.x to an integer
var xR = R.affineX
// 1.4.7 Set v = xR mod n
var v = xR.mod(n)
// 1.4.8 If v = r, output "valid", and if v != r, output "invalid"
return v.equals(r)
function recoverPubKey (e, signature, i) {
typeforce(types.tuple(
types.BigInt,
types.ECSignature,
types.UInt2
), arguments)
var n = secp256k1.n
var G = secp256k1.G
var r = signature.r
var s = signature.s
if (r.signum() <= 0 || r.compareTo(n) >= 0) throw new Error('Invalid r value')
if (s.signum() <= 0 || s.compareTo(n) >= 0) throw new Error('Invalid s value')
// A set LSB signifies that the y-coordinate is odd
var isYOdd = i & 1
// The more significant bit specifies whether we should use the
// first or second candidate key.
var isSecondKey = i >> 1
// 1.1 Let x = r + jn
var x = isSecondKey ? r.add(n) : r
var R = secp256k1.pointFromX(isYOdd, x)
// 1.4 Check that nR is at infinity
var nR = R.multiply(n)
if (!secp256k1.isInfinity(nR)) throw new Error('nR is not a valid curve point')
// Compute r^-1
var rInv = r.modInverse(n)
// Compute -e from e
var eNeg = e.negate().mod(n)
// 1.6.1 Compute Q = r^-1 (sR - eG)
// Q = r^-1 (sR + -eG)
var Q = R.multiplyTwo(s, G, eNeg).multiply(rInv)
secp256k1.validate(Q)
return Q
}
/**
* Calculate pubkey extraction parameter.
*
* When extracting a pubkey from a signature, we have to
* distinguish four different cases. Rather than putting this
* burden on the verifier, Bitcoin includes a 2-bit value with the
* signature.
*
* This function simply tries all four cases and returns the value
* that resulted in a successful pubkey recovery.
*/
function calcPubKeyRecoveryParam (e, signature, Q) {
typeforce(types.tuple(
types.BigInt,
types.ECSignature,
types.ECPoint
), arguments)
for (var i = 0; i < 4; i++) {
var Qprime = recoverPubKey(e, signature, i)
// 1.6.2 Verify Q
if (Qprime.equals(Q)) {
return i
}
}
throw new Error('Unable to find valid recovery factor')
}
module.exports = {
calcPubKeyRecoveryParam: calcPubKeyRecoveryParam,
deterministicGenerateK: deterministicGenerateK,
recoverPubKey: recoverPubKey,
sign: sign,
verify: verify,
curve: secp256k1
}
command-line
add a comment |
var createHmac = require('create-hmac')
var typeforce = require('typeforce')
var types = require('./types')
var BigInteger = require('bigi')
var ECSignature = require('./ecsignature')
var ZERO = new Buffer([0])
var ONE = new Buffer([1])
var ecurve = require('ecurve')
var secp256k1 = ecurve.getCurveByName('secp256k1')
function deterministicGenerateK (hash, x, checkSig) {
typeforce(types.tuple(
types.Hash256bit,
types.Buffer256bit,
types.Function
), arguments)
var k = new Buffer(32)
var v = new Buffer(32)
// Step A, ignored as hash already provided
// Step B
v.fill(1)
// Step C
k.fill(0)
// Step D
k = createHmac('sha256', k)
.update(v)
.update(ZERO)
.update(x)
.update(hash)
.digest()
// Step E
v = createHmac('sha256', k).update(v).digest()
// Step F
k = createHmac('sha256', k)
.update(v)
.update(ONE)
.update(x)
.update(hash)
.digest()
// Step G
v = createHmac('sha256', k).update(v).digest()
// Step H1/H2a, ignored as tlen === qlen (256 bit)
// Step H2b
v = createHmac('sha256', k).update(v).digest()
var T = BigInteger.fromBuffer(v)
// Step H3, repeat until T is within the interval [1, n - 1] and is suitable for ECDSA
while (T.signum() <= 0 || T.compareTo(secp256k1.n) >= 0 || !checkSig(T)) {
k = createHmac('sha256', k)
.update(v)
.update(ZERO)
.digest()
v = createHmac('sha256', k).update(v).digest()
// Step H1/H2a, again, ignored as tlen === qlen (256 bit)
// Step H2b again
v = createHmac('sha256', k).update(v).digest()
T = BigInteger.fromBuffer(v)
}
return T
}
var N_OVER_TWO = secp256k1.n.shiftRight(1)
function sign (hash, d) {
typeforce(types.tuple(types.Hash256bit, types.BigInt), arguments)
var x = d.toBuffer(32)
var e = BigInteger.fromBuffer(hash)
var n = secp256k1.n
var G = secp256k1.G
var r, s
deterministicGenerateK(hash, x, function (k) {
var Q = G.multiply(k)
if (secp256k1.isInfinity(Q)) return false
r = Q.affineX.mod(n)
if (r.signum() === 0) return false
s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n)
if (s.signum() === 0) return false
return true
})
// enforce low S values, see bip62: 'low s values in signatures'
if (s.compareTo(N_OVER_TWO) > 0) {
s = n.subtract(s)
}
return new ECSignature(r, s)
}
function verify (hash, signature, Q) {
typeforce(types.tuple(
types.Hash256bit,
types.ECSignature,
types.ECPoint
), arguments)
var n = secp256k1.n
var G = secp256k1.G
var r = signature.r
var s = signature.s
// 1.4.1 Enforce r and s are both integers in the interval [1, n − 1]
if (r.signum() <= 0 || r.compareTo(n) >= 0) return false
if (s.signum() <= 0 || s.compareTo(n) >= 0) return false
// 1.4.2 H = Hash(M), already done by the user
// 1.4.3 e = H
var e = BigInteger.fromBuffer(hash)
// Compute s^-1
var sInv = s.modInverse(n)
// 1.4.4 Compute u1 = es^−1 mod n
// u2 = rs^−1 mod n
var u1 = e.multiply(sInv).mod(n)
var u2 = r.multiply(sInv).mod(n)
// 1.4.5 Compute R = (xR, yR)
// R = u1G + u2Q
var R = G.multiplyTwo(u1, Q, u2)
// 1.4.5 (cont.) Enforce R is not at infinity
if (secp256k1.isInfinity(R)) return false
// 1.4.6 Convert the field element R.x to an integer
var xR = R.affineX
// 1.4.7 Set v = xR mod n
var v = xR.mod(n)
// 1.4.8 If v = r, output "valid", and if v != r, output "invalid"
return v.equals(r)
function recoverPubKey (e, signature, i) {
typeforce(types.tuple(
types.BigInt,
types.ECSignature,
types.UInt2
), arguments)
var n = secp256k1.n
var G = secp256k1.G
var r = signature.r
var s = signature.s
if (r.signum() <= 0 || r.compareTo(n) >= 0) throw new Error('Invalid r value')
if (s.signum() <= 0 || s.compareTo(n) >= 0) throw new Error('Invalid s value')
// A set LSB signifies that the y-coordinate is odd
var isYOdd = i & 1
// The more significant bit specifies whether we should use the
// first or second candidate key.
var isSecondKey = i >> 1
// 1.1 Let x = r + jn
var x = isSecondKey ? r.add(n) : r
var R = secp256k1.pointFromX(isYOdd, x)
// 1.4 Check that nR is at infinity
var nR = R.multiply(n)
if (!secp256k1.isInfinity(nR)) throw new Error('nR is not a valid curve point')
// Compute r^-1
var rInv = r.modInverse(n)
// Compute -e from e
var eNeg = e.negate().mod(n)
// 1.6.1 Compute Q = r^-1 (sR - eG)
// Q = r^-1 (sR + -eG)
var Q = R.multiplyTwo(s, G, eNeg).multiply(rInv)
secp256k1.validate(Q)
return Q
}
/**
* Calculate pubkey extraction parameter.
*
* When extracting a pubkey from a signature, we have to
* distinguish four different cases. Rather than putting this
* burden on the verifier, Bitcoin includes a 2-bit value with the
* signature.
*
* This function simply tries all four cases and returns the value
* that resulted in a successful pubkey recovery.
*/
function calcPubKeyRecoveryParam (e, signature, Q) {
typeforce(types.tuple(
types.BigInt,
types.ECSignature,
types.ECPoint
), arguments)
for (var i = 0; i < 4; i++) {
var Qprime = recoverPubKey(e, signature, i)
// 1.6.2 Verify Q
if (Qprime.equals(Q)) {
return i
}
}
throw new Error('Unable to find valid recovery factor')
}
module.exports = {
calcPubKeyRecoveryParam: calcPubKeyRecoveryParam,
deterministicGenerateK: deterministicGenerateK,
recoverPubKey: recoverPubKey,
sign: sign,
verify: verify,
curve: secp256k1
}
command-line
add a comment |
var createHmac = require('create-hmac')
var typeforce = require('typeforce')
var types = require('./types')
var BigInteger = require('bigi')
var ECSignature = require('./ecsignature')
var ZERO = new Buffer([0])
var ONE = new Buffer([1])
var ecurve = require('ecurve')
var secp256k1 = ecurve.getCurveByName('secp256k1')
function deterministicGenerateK (hash, x, checkSig) {
typeforce(types.tuple(
types.Hash256bit,
types.Buffer256bit,
types.Function
), arguments)
var k = new Buffer(32)
var v = new Buffer(32)
// Step A, ignored as hash already provided
// Step B
v.fill(1)
// Step C
k.fill(0)
// Step D
k = createHmac('sha256', k)
.update(v)
.update(ZERO)
.update(x)
.update(hash)
.digest()
// Step E
v = createHmac('sha256', k).update(v).digest()
// Step F
k = createHmac('sha256', k)
.update(v)
.update(ONE)
.update(x)
.update(hash)
.digest()
// Step G
v = createHmac('sha256', k).update(v).digest()
// Step H1/H2a, ignored as tlen === qlen (256 bit)
// Step H2b
v = createHmac('sha256', k).update(v).digest()
var T = BigInteger.fromBuffer(v)
// Step H3, repeat until T is within the interval [1, n - 1] and is suitable for ECDSA
while (T.signum() <= 0 || T.compareTo(secp256k1.n) >= 0 || !checkSig(T)) {
k = createHmac('sha256', k)
.update(v)
.update(ZERO)
.digest()
v = createHmac('sha256', k).update(v).digest()
// Step H1/H2a, again, ignored as tlen === qlen (256 bit)
// Step H2b again
v = createHmac('sha256', k).update(v).digest()
T = BigInteger.fromBuffer(v)
}
return T
}
var N_OVER_TWO = secp256k1.n.shiftRight(1)
function sign (hash, d) {
typeforce(types.tuple(types.Hash256bit, types.BigInt), arguments)
var x = d.toBuffer(32)
var e = BigInteger.fromBuffer(hash)
var n = secp256k1.n
var G = secp256k1.G
var r, s
deterministicGenerateK(hash, x, function (k) {
var Q = G.multiply(k)
if (secp256k1.isInfinity(Q)) return false
r = Q.affineX.mod(n)
if (r.signum() === 0) return false
s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n)
if (s.signum() === 0) return false
return true
})
// enforce low S values, see bip62: 'low s values in signatures'
if (s.compareTo(N_OVER_TWO) > 0) {
s = n.subtract(s)
}
return new ECSignature(r, s)
}
function verify (hash, signature, Q) {
typeforce(types.tuple(
types.Hash256bit,
types.ECSignature,
types.ECPoint
), arguments)
var n = secp256k1.n
var G = secp256k1.G
var r = signature.r
var s = signature.s
// 1.4.1 Enforce r and s are both integers in the interval [1, n − 1]
if (r.signum() <= 0 || r.compareTo(n) >= 0) return false
if (s.signum() <= 0 || s.compareTo(n) >= 0) return false
// 1.4.2 H = Hash(M), already done by the user
// 1.4.3 e = H
var e = BigInteger.fromBuffer(hash)
// Compute s^-1
var sInv = s.modInverse(n)
// 1.4.4 Compute u1 = es^−1 mod n
// u2 = rs^−1 mod n
var u1 = e.multiply(sInv).mod(n)
var u2 = r.multiply(sInv).mod(n)
// 1.4.5 Compute R = (xR, yR)
// R = u1G + u2Q
var R = G.multiplyTwo(u1, Q, u2)
// 1.4.5 (cont.) Enforce R is not at infinity
if (secp256k1.isInfinity(R)) return false
// 1.4.6 Convert the field element R.x to an integer
var xR = R.affineX
// 1.4.7 Set v = xR mod n
var v = xR.mod(n)
// 1.4.8 If v = r, output "valid", and if v != r, output "invalid"
return v.equals(r)
function recoverPubKey (e, signature, i) {
typeforce(types.tuple(
types.BigInt,
types.ECSignature,
types.UInt2
), arguments)
var n = secp256k1.n
var G = secp256k1.G
var r = signature.r
var s = signature.s
if (r.signum() <= 0 || r.compareTo(n) >= 0) throw new Error('Invalid r value')
if (s.signum() <= 0 || s.compareTo(n) >= 0) throw new Error('Invalid s value')
// A set LSB signifies that the y-coordinate is odd
var isYOdd = i & 1
// The more significant bit specifies whether we should use the
// first or second candidate key.
var isSecondKey = i >> 1
// 1.1 Let x = r + jn
var x = isSecondKey ? r.add(n) : r
var R = secp256k1.pointFromX(isYOdd, x)
// 1.4 Check that nR is at infinity
var nR = R.multiply(n)
if (!secp256k1.isInfinity(nR)) throw new Error('nR is not a valid curve point')
// Compute r^-1
var rInv = r.modInverse(n)
// Compute -e from e
var eNeg = e.negate().mod(n)
// 1.6.1 Compute Q = r^-1 (sR - eG)
// Q = r^-1 (sR + -eG)
var Q = R.multiplyTwo(s, G, eNeg).multiply(rInv)
secp256k1.validate(Q)
return Q
}
/**
* Calculate pubkey extraction parameter.
*
* When extracting a pubkey from a signature, we have to
* distinguish four different cases. Rather than putting this
* burden on the verifier, Bitcoin includes a 2-bit value with the
* signature.
*
* This function simply tries all four cases and returns the value
* that resulted in a successful pubkey recovery.
*/
function calcPubKeyRecoveryParam (e, signature, Q) {
typeforce(types.tuple(
types.BigInt,
types.ECSignature,
types.ECPoint
), arguments)
for (var i = 0; i < 4; i++) {
var Qprime = recoverPubKey(e, signature, i)
// 1.6.2 Verify Q
if (Qprime.equals(Q)) {
return i
}
}
throw new Error('Unable to find valid recovery factor')
}
module.exports = {
calcPubKeyRecoveryParam: calcPubKeyRecoveryParam,
deterministicGenerateK: deterministicGenerateK,
recoverPubKey: recoverPubKey,
sign: sign,
verify: verify,
curve: secp256k1
}
command-line
var createHmac = require('create-hmac')
var typeforce = require('typeforce')
var types = require('./types')
var BigInteger = require('bigi')
var ECSignature = require('./ecsignature')
var ZERO = new Buffer([0])
var ONE = new Buffer([1])
var ecurve = require('ecurve')
var secp256k1 = ecurve.getCurveByName('secp256k1')
function deterministicGenerateK (hash, x, checkSig) {
typeforce(types.tuple(
types.Hash256bit,
types.Buffer256bit,
types.Function
), arguments)
var k = new Buffer(32)
var v = new Buffer(32)
// Step A, ignored as hash already provided
// Step B
v.fill(1)
// Step C
k.fill(0)
// Step D
k = createHmac('sha256', k)
.update(v)
.update(ZERO)
.update(x)
.update(hash)
.digest()
// Step E
v = createHmac('sha256', k).update(v).digest()
// Step F
k = createHmac('sha256', k)
.update(v)
.update(ONE)
.update(x)
.update(hash)
.digest()
// Step G
v = createHmac('sha256', k).update(v).digest()
// Step H1/H2a, ignored as tlen === qlen (256 bit)
// Step H2b
v = createHmac('sha256', k).update(v).digest()
var T = BigInteger.fromBuffer(v)
// Step H3, repeat until T is within the interval [1, n - 1] and is suitable for ECDSA
while (T.signum() <= 0 || T.compareTo(secp256k1.n) >= 0 || !checkSig(T)) {
k = createHmac('sha256', k)
.update(v)
.update(ZERO)
.digest()
v = createHmac('sha256', k).update(v).digest()
// Step H1/H2a, again, ignored as tlen === qlen (256 bit)
// Step H2b again
v = createHmac('sha256', k).update(v).digest()
T = BigInteger.fromBuffer(v)
}
return T
}
var N_OVER_TWO = secp256k1.n.shiftRight(1)
function sign (hash, d) {
typeforce(types.tuple(types.Hash256bit, types.BigInt), arguments)
var x = d.toBuffer(32)
var e = BigInteger.fromBuffer(hash)
var n = secp256k1.n
var G = secp256k1.G
var r, s
deterministicGenerateK(hash, x, function (k) {
var Q = G.multiply(k)
if (secp256k1.isInfinity(Q)) return false
r = Q.affineX.mod(n)
if (r.signum() === 0) return false
s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n)
if (s.signum() === 0) return false
return true
})
// enforce low S values, see bip62: 'low s values in signatures'
if (s.compareTo(N_OVER_TWO) > 0) {
s = n.subtract(s)
}
return new ECSignature(r, s)
}
function verify (hash, signature, Q) {
typeforce(types.tuple(
types.Hash256bit,
types.ECSignature,
types.ECPoint
), arguments)
var n = secp256k1.n
var G = secp256k1.G
var r = signature.r
var s = signature.s
// 1.4.1 Enforce r and s are both integers in the interval [1, n − 1]
if (r.signum() <= 0 || r.compareTo(n) >= 0) return false
if (s.signum() <= 0 || s.compareTo(n) >= 0) return false
// 1.4.2 H = Hash(M), already done by the user
// 1.4.3 e = H
var e = BigInteger.fromBuffer(hash)
// Compute s^-1
var sInv = s.modInverse(n)
// 1.4.4 Compute u1 = es^−1 mod n
// u2 = rs^−1 mod n
var u1 = e.multiply(sInv).mod(n)
var u2 = r.multiply(sInv).mod(n)
// 1.4.5 Compute R = (xR, yR)
// R = u1G + u2Q
var R = G.multiplyTwo(u1, Q, u2)
// 1.4.5 (cont.) Enforce R is not at infinity
if (secp256k1.isInfinity(R)) return false
// 1.4.6 Convert the field element R.x to an integer
var xR = R.affineX
// 1.4.7 Set v = xR mod n
var v = xR.mod(n)
// 1.4.8 If v = r, output "valid", and if v != r, output "invalid"
return v.equals(r)
function recoverPubKey (e, signature, i) {
typeforce(types.tuple(
types.BigInt,
types.ECSignature,
types.UInt2
), arguments)
var n = secp256k1.n
var G = secp256k1.G
var r = signature.r
var s = signature.s
if (r.signum() <= 0 || r.compareTo(n) >= 0) throw new Error('Invalid r value')
if (s.signum() <= 0 || s.compareTo(n) >= 0) throw new Error('Invalid s value')
// A set LSB signifies that the y-coordinate is odd
var isYOdd = i & 1
// The more significant bit specifies whether we should use the
// first or second candidate key.
var isSecondKey = i >> 1
// 1.1 Let x = r + jn
var x = isSecondKey ? r.add(n) : r
var R = secp256k1.pointFromX(isYOdd, x)
// 1.4 Check that nR is at infinity
var nR = R.multiply(n)
if (!secp256k1.isInfinity(nR)) throw new Error('nR is not a valid curve point')
// Compute r^-1
var rInv = r.modInverse(n)
// Compute -e from e
var eNeg = e.negate().mod(n)
// 1.6.1 Compute Q = r^-1 (sR - eG)
// Q = r^-1 (sR + -eG)
var Q = R.multiplyTwo(s, G, eNeg).multiply(rInv)
secp256k1.validate(Q)
return Q
}
/**
* Calculate pubkey extraction parameter.
*
* When extracting a pubkey from a signature, we have to
* distinguish four different cases. Rather than putting this
* burden on the verifier, Bitcoin includes a 2-bit value with the
* signature.
*
* This function simply tries all four cases and returns the value
* that resulted in a successful pubkey recovery.
*/
function calcPubKeyRecoveryParam (e, signature, Q) {
typeforce(types.tuple(
types.BigInt,
types.ECSignature,
types.ECPoint
), arguments)
for (var i = 0; i < 4; i++) {
var Qprime = recoverPubKey(e, signature, i)
// 1.6.2 Verify Q
if (Qprime.equals(Q)) {
return i
}
}
throw new Error('Unable to find valid recovery factor')
}
module.exports = {
calcPubKeyRecoveryParam: calcPubKeyRecoveryParam,
deterministicGenerateK: deterministicGenerateK,
recoverPubKey: recoverPubKey,
sign: sign,
verify: verify,
curve: secp256k1
}
command-line
command-line
asked Mar 23 at 17:24
Mike BeamMike Beam
1
1
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "89"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2faskubuntu.com%2fquestions%2f1128099%2fon-javascript-trying-to-run-ecdsa-code-but-its-showing-menode8907-dep0005%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Ask Ubuntu!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2faskubuntu.com%2fquestions%2f1128099%2fon-javascript-trying-to-run-ecdsa-code-but-its-showing-menode8907-dep0005%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown