Partitioning values in a sequence












2












$begingroup$


I have a sequence that forms visible lines when plotted as a graph, what would be a good way to automatically partition the sequence to create a list of sequences, one for each line that is visible when the sequence is plotted?



Here is the start of the sequence:



list = {2,3,5,11,7,23,13,29,41,17,53,37,83,43,89,19,113,131,67,47,73,31,79,173,179,61,191,97,233,239,251,127,139,281,71,293,101,103,107,163,59,359,193,199,137,419,431,443,151,491,509,181,109,277,593,149,307,641,653,659,683,719,241,743,373,761,257,157,263,809,271,409,283,433,911,311,313,953,487,331,499,1013,1019,1031,347,1049,211,269,367,1103,577,167,397,1223,1229,619,1289,223,673,229,461,467,1409,709,1439,1451,727,739,1481,1499,503,1511,1559,1583,1601,401,557,337,853,1733,349,883,197};


Thanks.



cheers,
Jamie










share|improve this question











$endgroup$












  • $begingroup$
    Possible duplicate of ordering-the-elements-in-a-list-and-separate-them-into-sublists-for-plotting
    $endgroup$
    – MelaGo
    5 hours ago
















2












$begingroup$


I have a sequence that forms visible lines when plotted as a graph, what would be a good way to automatically partition the sequence to create a list of sequences, one for each line that is visible when the sequence is plotted?



Here is the start of the sequence:



list = {2,3,5,11,7,23,13,29,41,17,53,37,83,43,89,19,113,131,67,47,73,31,79,173,179,61,191,97,233,239,251,127,139,281,71,293,101,103,107,163,59,359,193,199,137,419,431,443,151,491,509,181,109,277,593,149,307,641,653,659,683,719,241,743,373,761,257,157,263,809,271,409,283,433,911,311,313,953,487,331,499,1013,1019,1031,347,1049,211,269,367,1103,577,167,397,1223,1229,619,1289,223,673,229,461,467,1409,709,1439,1451,727,739,1481,1499,503,1511,1559,1583,1601,401,557,337,853,1733,349,883,197};


Thanks.



cheers,
Jamie










share|improve this question











$endgroup$












  • $begingroup$
    Possible duplicate of ordering-the-elements-in-a-list-and-separate-them-into-sublists-for-plotting
    $endgroup$
    – MelaGo
    5 hours ago














2












2








2





$begingroup$


I have a sequence that forms visible lines when plotted as a graph, what would be a good way to automatically partition the sequence to create a list of sequences, one for each line that is visible when the sequence is plotted?



Here is the start of the sequence:



list = {2,3,5,11,7,23,13,29,41,17,53,37,83,43,89,19,113,131,67,47,73,31,79,173,179,61,191,97,233,239,251,127,139,281,71,293,101,103,107,163,59,359,193,199,137,419,431,443,151,491,509,181,109,277,593,149,307,641,653,659,683,719,241,743,373,761,257,157,263,809,271,409,283,433,911,311,313,953,487,331,499,1013,1019,1031,347,1049,211,269,367,1103,577,167,397,1223,1229,619,1289,223,673,229,461,467,1409,709,1439,1451,727,739,1481,1499,503,1511,1559,1583,1601,401,557,337,853,1733,349,883,197};


Thanks.



cheers,
Jamie










share|improve this question











$endgroup$




I have a sequence that forms visible lines when plotted as a graph, what would be a good way to automatically partition the sequence to create a list of sequences, one for each line that is visible when the sequence is plotted?



Here is the start of the sequence:



list = {2,3,5,11,7,23,13,29,41,17,53,37,83,43,89,19,113,131,67,47,73,31,79,173,179,61,191,97,233,239,251,127,139,281,71,293,101,103,107,163,59,359,193,199,137,419,431,443,151,491,509,181,109,277,593,149,307,641,653,659,683,719,241,743,373,761,257,157,263,809,271,409,283,433,911,311,313,953,487,331,499,1013,1019,1031,347,1049,211,269,367,1103,577,167,397,1223,1229,619,1289,223,673,229,461,467,1409,709,1439,1451,727,739,1481,1499,503,1511,1559,1583,1601,401,557,337,853,1733,349,883,197};


Thanks.



cheers,
Jamie







partitions






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 33 mins ago









user64494

3,65311122




3,65311122










asked 6 hours ago









Jamie MJamie M

475




475












  • $begingroup$
    Possible duplicate of ordering-the-elements-in-a-list-and-separate-them-into-sublists-for-plotting
    $endgroup$
    – MelaGo
    5 hours ago


















  • $begingroup$
    Possible duplicate of ordering-the-elements-in-a-list-and-separate-them-into-sublists-for-plotting
    $endgroup$
    – MelaGo
    5 hours ago
















$begingroup$
Possible duplicate of ordering-the-elements-in-a-list-and-separate-them-into-sublists-for-plotting
$endgroup$
– MelaGo
5 hours ago




$begingroup$
Possible duplicate of ordering-the-elements-in-a-list-and-separate-them-into-sublists-for-plotting
$endgroup$
– MelaGo
5 hours ago










2 Answers
2






active

oldest

votes


















1












$begingroup$

You could for instance fit a mean polynomial function through the data:



fun = NonlinearModelFit[list, a x^2 + b x + c , {a, b, c}, x] //Normal



-48.3941 + 6.86017 x + 0.0161064 x^2




This will separarate the upper line from the lower line that you can see in the plot:



Show[
ListLinePlot[list, PlotRange -> All],
Plot[fun, {x, 0, 125}, PlotRange -> All, PlotStyle -> Red],
PlotRange -> All]


enter image description here



Then you can simply run through the list and separate it into two lists based on whether the value is above or below the mean fit:



upperLine = {};
lowerLine = {};
Do[
If[list[[x]] > fun,
AppendTo[upperLine, {x, list[[x]]}],
AppendTo[lowerLine, {x, list[[x]]}]];
, {x, 1, Length[list]}]


The upperLine and lowerLine data sets then look like:



{ListLinePlot[upperLine], ListLinePlot[lowerLine]}


enter image description here



Repeat the process on the lowerLine data to separate the sequences further.






share|improve this answer











$endgroup$





















    2












    $begingroup$

    list = {2, 3, 5, 11, 7, 23, 13, 29, 41, 17, 53, 37, 83, 43, 89, 19, 
    113, 131, 67, 47, 73, 31, 79, 173, 179, 61, 191, 97, 233, 239, 251,
    127, 139, 281, 71, 293, 101, 103, 107, 163, 59, 359, 193, 199,
    137, 419, 431, 443, 151, 491, 509, 181, 109, 277, 593, 149, 307,
    641, 653, 659, 683, 719, 241, 743, 373, 761, 257, 157, 263, 809,
    271, 409, 283, 433, 911, 311, 313, 953, 487, 331, 499, 1013, 1019,
    1031, 347, 1049, 211, 269, 367, 1103, 577, 167, 397, 1223, 1229,
    619, 1289, 223, 673, 229, 461, 467, 1409, 709, 1439, 1451, 727,
    739, 1481, 1499, 503, 1511, 1559, 1583, 1601, 401, 557, 337, 853,
    1733, 349, 883, 197};

    upper = FindPeaks[list];

    lower = {1, -1} # & /@ FindPeaks[-list];

    ListLinePlot[{list, lower, upper},
    PlotStyle -> {LightGray, Blue, Red}]


    enter image description here






    share|improve this answer









    $endgroup$














      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "387"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f197055%2fpartitioning-values-in-a-sequence%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      You could for instance fit a mean polynomial function through the data:



      fun = NonlinearModelFit[list, a x^2 + b x + c , {a, b, c}, x] //Normal



      -48.3941 + 6.86017 x + 0.0161064 x^2




      This will separarate the upper line from the lower line that you can see in the plot:



      Show[
      ListLinePlot[list, PlotRange -> All],
      Plot[fun, {x, 0, 125}, PlotRange -> All, PlotStyle -> Red],
      PlotRange -> All]


      enter image description here



      Then you can simply run through the list and separate it into two lists based on whether the value is above or below the mean fit:



      upperLine = {};
      lowerLine = {};
      Do[
      If[list[[x]] > fun,
      AppendTo[upperLine, {x, list[[x]]}],
      AppendTo[lowerLine, {x, list[[x]]}]];
      , {x, 1, Length[list]}]


      The upperLine and lowerLine data sets then look like:



      {ListLinePlot[upperLine], ListLinePlot[lowerLine]}


      enter image description here



      Repeat the process on the lowerLine data to separate the sequences further.






      share|improve this answer











      $endgroup$


















        1












        $begingroup$

        You could for instance fit a mean polynomial function through the data:



        fun = NonlinearModelFit[list, a x^2 + b x + c , {a, b, c}, x] //Normal



        -48.3941 + 6.86017 x + 0.0161064 x^2




        This will separarate the upper line from the lower line that you can see in the plot:



        Show[
        ListLinePlot[list, PlotRange -> All],
        Plot[fun, {x, 0, 125}, PlotRange -> All, PlotStyle -> Red],
        PlotRange -> All]


        enter image description here



        Then you can simply run through the list and separate it into two lists based on whether the value is above or below the mean fit:



        upperLine = {};
        lowerLine = {};
        Do[
        If[list[[x]] > fun,
        AppendTo[upperLine, {x, list[[x]]}],
        AppendTo[lowerLine, {x, list[[x]]}]];
        , {x, 1, Length[list]}]


        The upperLine and lowerLine data sets then look like:



        {ListLinePlot[upperLine], ListLinePlot[lowerLine]}


        enter image description here



        Repeat the process on the lowerLine data to separate the sequences further.






        share|improve this answer











        $endgroup$
















          1












          1








          1





          $begingroup$

          You could for instance fit a mean polynomial function through the data:



          fun = NonlinearModelFit[list, a x^2 + b x + c , {a, b, c}, x] //Normal



          -48.3941 + 6.86017 x + 0.0161064 x^2




          This will separarate the upper line from the lower line that you can see in the plot:



          Show[
          ListLinePlot[list, PlotRange -> All],
          Plot[fun, {x, 0, 125}, PlotRange -> All, PlotStyle -> Red],
          PlotRange -> All]


          enter image description here



          Then you can simply run through the list and separate it into two lists based on whether the value is above or below the mean fit:



          upperLine = {};
          lowerLine = {};
          Do[
          If[list[[x]] > fun,
          AppendTo[upperLine, {x, list[[x]]}],
          AppendTo[lowerLine, {x, list[[x]]}]];
          , {x, 1, Length[list]}]


          The upperLine and lowerLine data sets then look like:



          {ListLinePlot[upperLine], ListLinePlot[lowerLine]}


          enter image description here



          Repeat the process on the lowerLine data to separate the sequences further.






          share|improve this answer











          $endgroup$



          You could for instance fit a mean polynomial function through the data:



          fun = NonlinearModelFit[list, a x^2 + b x + c , {a, b, c}, x] //Normal



          -48.3941 + 6.86017 x + 0.0161064 x^2




          This will separarate the upper line from the lower line that you can see in the plot:



          Show[
          ListLinePlot[list, PlotRange -> All],
          Plot[fun, {x, 0, 125}, PlotRange -> All, PlotStyle -> Red],
          PlotRange -> All]


          enter image description here



          Then you can simply run through the list and separate it into two lists based on whether the value is above or below the mean fit:



          upperLine = {};
          lowerLine = {};
          Do[
          If[list[[x]] > fun,
          AppendTo[upperLine, {x, list[[x]]}],
          AppendTo[lowerLine, {x, list[[x]]}]];
          , {x, 1, Length[list]}]


          The upperLine and lowerLine data sets then look like:



          {ListLinePlot[upperLine], ListLinePlot[lowerLine]}


          enter image description here



          Repeat the process on the lowerLine data to separate the sequences further.







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 5 hours ago

























          answered 5 hours ago









          KagaratschKagaratsch

          4,87531348




          4,87531348























              2












              $begingroup$

              list = {2, 3, 5, 11, 7, 23, 13, 29, 41, 17, 53, 37, 83, 43, 89, 19, 
              113, 131, 67, 47, 73, 31, 79, 173, 179, 61, 191, 97, 233, 239, 251,
              127, 139, 281, 71, 293, 101, 103, 107, 163, 59, 359, 193, 199,
              137, 419, 431, 443, 151, 491, 509, 181, 109, 277, 593, 149, 307,
              641, 653, 659, 683, 719, 241, 743, 373, 761, 257, 157, 263, 809,
              271, 409, 283, 433, 911, 311, 313, 953, 487, 331, 499, 1013, 1019,
              1031, 347, 1049, 211, 269, 367, 1103, 577, 167, 397, 1223, 1229,
              619, 1289, 223, 673, 229, 461, 467, 1409, 709, 1439, 1451, 727,
              739, 1481, 1499, 503, 1511, 1559, 1583, 1601, 401, 557, 337, 853,
              1733, 349, 883, 197};

              upper = FindPeaks[list];

              lower = {1, -1} # & /@ FindPeaks[-list];

              ListLinePlot[{list, lower, upper},
              PlotStyle -> {LightGray, Blue, Red}]


              enter image description here






              share|improve this answer









              $endgroup$


















                2












                $begingroup$

                list = {2, 3, 5, 11, 7, 23, 13, 29, 41, 17, 53, 37, 83, 43, 89, 19, 
                113, 131, 67, 47, 73, 31, 79, 173, 179, 61, 191, 97, 233, 239, 251,
                127, 139, 281, 71, 293, 101, 103, 107, 163, 59, 359, 193, 199,
                137, 419, 431, 443, 151, 491, 509, 181, 109, 277, 593, 149, 307,
                641, 653, 659, 683, 719, 241, 743, 373, 761, 257, 157, 263, 809,
                271, 409, 283, 433, 911, 311, 313, 953, 487, 331, 499, 1013, 1019,
                1031, 347, 1049, 211, 269, 367, 1103, 577, 167, 397, 1223, 1229,
                619, 1289, 223, 673, 229, 461, 467, 1409, 709, 1439, 1451, 727,
                739, 1481, 1499, 503, 1511, 1559, 1583, 1601, 401, 557, 337, 853,
                1733, 349, 883, 197};

                upper = FindPeaks[list];

                lower = {1, -1} # & /@ FindPeaks[-list];

                ListLinePlot[{list, lower, upper},
                PlotStyle -> {LightGray, Blue, Red}]


                enter image description here






                share|improve this answer









                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  list = {2, 3, 5, 11, 7, 23, 13, 29, 41, 17, 53, 37, 83, 43, 89, 19, 
                  113, 131, 67, 47, 73, 31, 79, 173, 179, 61, 191, 97, 233, 239, 251,
                  127, 139, 281, 71, 293, 101, 103, 107, 163, 59, 359, 193, 199,
                  137, 419, 431, 443, 151, 491, 509, 181, 109, 277, 593, 149, 307,
                  641, 653, 659, 683, 719, 241, 743, 373, 761, 257, 157, 263, 809,
                  271, 409, 283, 433, 911, 311, 313, 953, 487, 331, 499, 1013, 1019,
                  1031, 347, 1049, 211, 269, 367, 1103, 577, 167, 397, 1223, 1229,
                  619, 1289, 223, 673, 229, 461, 467, 1409, 709, 1439, 1451, 727,
                  739, 1481, 1499, 503, 1511, 1559, 1583, 1601, 401, 557, 337, 853,
                  1733, 349, 883, 197};

                  upper = FindPeaks[list];

                  lower = {1, -1} # & /@ FindPeaks[-list];

                  ListLinePlot[{list, lower, upper},
                  PlotStyle -> {LightGray, Blue, Red}]


                  enter image description here






                  share|improve this answer









                  $endgroup$



                  list = {2, 3, 5, 11, 7, 23, 13, 29, 41, 17, 53, 37, 83, 43, 89, 19, 
                  113, 131, 67, 47, 73, 31, 79, 173, 179, 61, 191, 97, 233, 239, 251,
                  127, 139, 281, 71, 293, 101, 103, 107, 163, 59, 359, 193, 199,
                  137, 419, 431, 443, 151, 491, 509, 181, 109, 277, 593, 149, 307,
                  641, 653, 659, 683, 719, 241, 743, 373, 761, 257, 157, 263, 809,
                  271, 409, 283, 433, 911, 311, 313, 953, 487, 331, 499, 1013, 1019,
                  1031, 347, 1049, 211, 269, 367, 1103, 577, 167, 397, 1223, 1229,
                  619, 1289, 223, 673, 229, 461, 467, 1409, 709, 1439, 1451, 727,
                  739, 1481, 1499, 503, 1511, 1559, 1583, 1601, 401, 557, 337, 853,
                  1733, 349, 883, 197};

                  upper = FindPeaks[list];

                  lower = {1, -1} # & /@ FindPeaks[-list];

                  ListLinePlot[{list, lower, upper},
                  PlotStyle -> {LightGray, Blue, Red}]


                  enter image description here







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 1 hour ago









                  Bob HanlonBob Hanlon

                  61.9k33598




                  61.9k33598






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematica Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f197055%2fpartitioning-values-in-a-sequence%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      數位音樂下載

                      When can things happen in Etherscan, such as the picture below?

                      格利澤436b