Rudin 2.10 (b) Example
$begingroup$
Let $A$ be the set of real numbers such that $0 < x leq 1$ . For every $x in A$, let $E_{x}$ be the set of real numbers $y$ such that $0< y< x$. Then
$bigcap_{x in A} E_{x}$ is empty.
The Proof provided in textbook:
We note that for every $y > 0$, $y notin E_{x}$ if $x < y$. Hence $y notin bigcap_{x epsilon A} E_{x}$
I didn't understand the proof & also here is my understanding.
Counter Argument-1: We can always find a real number between every $(0,x)$ where x is $x > 0$. So, It can not be empty.
Counter Argument-2: This is somehow similar to Nested interval property, So, it can not be empty.
Please explain how rudin got this result ?
real-analysis set-theory
New contributor
$endgroup$
add a comment |
$begingroup$
Let $A$ be the set of real numbers such that $0 < x leq 1$ . For every $x in A$, let $E_{x}$ be the set of real numbers $y$ such that $0< y< x$. Then
$bigcap_{x in A} E_{x}$ is empty.
The Proof provided in textbook:
We note that for every $y > 0$, $y notin E_{x}$ if $x < y$. Hence $y notin bigcap_{x epsilon A} E_{x}$
I didn't understand the proof & also here is my understanding.
Counter Argument-1: We can always find a real number between every $(0,x)$ where x is $x > 0$. So, It can not be empty.
Counter Argument-2: This is somehow similar to Nested interval property, So, it can not be empty.
Please explain how rudin got this result ?
real-analysis set-theory
New contributor
$endgroup$
$begingroup$
He is saying that for any $y$, you can find an $x$ in the interval such that $xleq y$ and so $y$ is not in $E_x$ for that $x$ and so it cannot be in the intersection of all the $E_x$. Since $y$ was arbitrary, the intersection must be empty.
$endgroup$
– zbrads2
4 hours ago
$begingroup$
In addition to Martin's answer, the Nested Interval Property requires closed intervals.
$endgroup$
– Lucas Corrêa
4 hours ago
add a comment |
$begingroup$
Let $A$ be the set of real numbers such that $0 < x leq 1$ . For every $x in A$, let $E_{x}$ be the set of real numbers $y$ such that $0< y< x$. Then
$bigcap_{x in A} E_{x}$ is empty.
The Proof provided in textbook:
We note that for every $y > 0$, $y notin E_{x}$ if $x < y$. Hence $y notin bigcap_{x epsilon A} E_{x}$
I didn't understand the proof & also here is my understanding.
Counter Argument-1: We can always find a real number between every $(0,x)$ where x is $x > 0$. So, It can not be empty.
Counter Argument-2: This is somehow similar to Nested interval property, So, it can not be empty.
Please explain how rudin got this result ?
real-analysis set-theory
New contributor
$endgroup$
Let $A$ be the set of real numbers such that $0 < x leq 1$ . For every $x in A$, let $E_{x}$ be the set of real numbers $y$ such that $0< y< x$. Then
$bigcap_{x in A} E_{x}$ is empty.
The Proof provided in textbook:
We note that for every $y > 0$, $y notin E_{x}$ if $x < y$. Hence $y notin bigcap_{x epsilon A} E_{x}$
I didn't understand the proof & also here is my understanding.
Counter Argument-1: We can always find a real number between every $(0,x)$ where x is $x > 0$. So, It can not be empty.
Counter Argument-2: This is somehow similar to Nested interval property, So, it can not be empty.
Please explain how rudin got this result ?
real-analysis set-theory
real-analysis set-theory
New contributor
New contributor
edited 4 hours ago
Lucas Corrêa
1,6151421
1,6151421
New contributor
asked 5 hours ago
Mahendra ReddyMahendra Reddy
212
212
New contributor
New contributor
$begingroup$
He is saying that for any $y$, you can find an $x$ in the interval such that $xleq y$ and so $y$ is not in $E_x$ for that $x$ and so it cannot be in the intersection of all the $E_x$. Since $y$ was arbitrary, the intersection must be empty.
$endgroup$
– zbrads2
4 hours ago
$begingroup$
In addition to Martin's answer, the Nested Interval Property requires closed intervals.
$endgroup$
– Lucas Corrêa
4 hours ago
add a comment |
$begingroup$
He is saying that for any $y$, you can find an $x$ in the interval such that $xleq y$ and so $y$ is not in $E_x$ for that $x$ and so it cannot be in the intersection of all the $E_x$. Since $y$ was arbitrary, the intersection must be empty.
$endgroup$
– zbrads2
4 hours ago
$begingroup$
In addition to Martin's answer, the Nested Interval Property requires closed intervals.
$endgroup$
– Lucas Corrêa
4 hours ago
$begingroup$
He is saying that for any $y$, you can find an $x$ in the interval such that $xleq y$ and so $y$ is not in $E_x$ for that $x$ and so it cannot be in the intersection of all the $E_x$. Since $y$ was arbitrary, the intersection must be empty.
$endgroup$
– zbrads2
4 hours ago
$begingroup$
He is saying that for any $y$, you can find an $x$ in the interval such that $xleq y$ and so $y$ is not in $E_x$ for that $x$ and so it cannot be in the intersection of all the $E_x$. Since $y$ was arbitrary, the intersection must be empty.
$endgroup$
– zbrads2
4 hours ago
$begingroup$
In addition to Martin's answer, the Nested Interval Property requires closed intervals.
$endgroup$
– Lucas Corrêa
4 hours ago
$begingroup$
In addition to Martin's answer, the Nested Interval Property requires closed intervals.
$endgroup$
– Lucas Corrêa
4 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Note that $bigcap_{xin A}E_xsubset(0,infty)$. If $yin bigcap_{xin A}E_xsubset(0,infty)$, this means that $y<x$ for all $x>0$. As Rudin says, this is a contradiction because given $y>0$, you can always find $x$ with $0<x<y$ (for instance, $x=y/2$).
Regarding your comment, the nested interval property is about compact sets. These are open and not closed.
$endgroup$
add a comment |
$begingroup$
Note that $xnotin E_x$ for every $x$
New contributor
$endgroup$
$begingroup$
Welcome to Mathematics Stack Exchange! A quick tour will enhance your experience. Here are helpful tips to write a good question and write a good answer.
$endgroup$
– dantopa
3 hours ago
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Mahendra Reddy is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3202687%2frudin-2-10-b-example%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that $bigcap_{xin A}E_xsubset(0,infty)$. If $yin bigcap_{xin A}E_xsubset(0,infty)$, this means that $y<x$ for all $x>0$. As Rudin says, this is a contradiction because given $y>0$, you can always find $x$ with $0<x<y$ (for instance, $x=y/2$).
Regarding your comment, the nested interval property is about compact sets. These are open and not closed.
$endgroup$
add a comment |
$begingroup$
Note that $bigcap_{xin A}E_xsubset(0,infty)$. If $yin bigcap_{xin A}E_xsubset(0,infty)$, this means that $y<x$ for all $x>0$. As Rudin says, this is a contradiction because given $y>0$, you can always find $x$ with $0<x<y$ (for instance, $x=y/2$).
Regarding your comment, the nested interval property is about compact sets. These are open and not closed.
$endgroup$
add a comment |
$begingroup$
Note that $bigcap_{xin A}E_xsubset(0,infty)$. If $yin bigcap_{xin A}E_xsubset(0,infty)$, this means that $y<x$ for all $x>0$. As Rudin says, this is a contradiction because given $y>0$, you can always find $x$ with $0<x<y$ (for instance, $x=y/2$).
Regarding your comment, the nested interval property is about compact sets. These are open and not closed.
$endgroup$
Note that $bigcap_{xin A}E_xsubset(0,infty)$. If $yin bigcap_{xin A}E_xsubset(0,infty)$, this means that $y<x$ for all $x>0$. As Rudin says, this is a contradiction because given $y>0$, you can always find $x$ with $0<x<y$ (for instance, $x=y/2$).
Regarding your comment, the nested interval property is about compact sets. These are open and not closed.
edited 4 hours ago
answered 4 hours ago
Martin ArgeramiMartin Argerami
130k1184185
130k1184185
add a comment |
add a comment |
$begingroup$
Note that $xnotin E_x$ for every $x$
New contributor
$endgroup$
$begingroup$
Welcome to Mathematics Stack Exchange! A quick tour will enhance your experience. Here are helpful tips to write a good question and write a good answer.
$endgroup$
– dantopa
3 hours ago
add a comment |
$begingroup$
Note that $xnotin E_x$ for every $x$
New contributor
$endgroup$
$begingroup$
Welcome to Mathematics Stack Exchange! A quick tour will enhance your experience. Here are helpful tips to write a good question and write a good answer.
$endgroup$
– dantopa
3 hours ago
add a comment |
$begingroup$
Note that $xnotin E_x$ for every $x$
New contributor
$endgroup$
Note that $xnotin E_x$ for every $x$
New contributor
New contributor
answered 4 hours ago
Andreé RíosAndreé Ríos
1
1
New contributor
New contributor
$begingroup$
Welcome to Mathematics Stack Exchange! A quick tour will enhance your experience. Here are helpful tips to write a good question and write a good answer.
$endgroup$
– dantopa
3 hours ago
add a comment |
$begingroup$
Welcome to Mathematics Stack Exchange! A quick tour will enhance your experience. Here are helpful tips to write a good question and write a good answer.
$endgroup$
– dantopa
3 hours ago
$begingroup$
Welcome to Mathematics Stack Exchange! A quick tour will enhance your experience. Here are helpful tips to write a good question and write a good answer.
$endgroup$
– dantopa
3 hours ago
$begingroup$
Welcome to Mathematics Stack Exchange! A quick tour will enhance your experience. Here are helpful tips to write a good question and write a good answer.
$endgroup$
– dantopa
3 hours ago
add a comment |
Mahendra Reddy is a new contributor. Be nice, and check out our Code of Conduct.
Mahendra Reddy is a new contributor. Be nice, and check out our Code of Conduct.
Mahendra Reddy is a new contributor. Be nice, and check out our Code of Conduct.
Mahendra Reddy is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3202687%2frudin-2-10-b-example%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
He is saying that for any $y$, you can find an $x$ in the interval such that $xleq y$ and so $y$ is not in $E_x$ for that $x$ and so it cannot be in the intersection of all the $E_x$. Since $y$ was arbitrary, the intersection must be empty.
$endgroup$
– zbrads2
4 hours ago
$begingroup$
In addition to Martin's answer, the Nested Interval Property requires closed intervals.
$endgroup$
– Lucas Corrêa
4 hours ago