How to draw Micrometer scale using TikZ












22















How to draw these two figures in TikZ?



enter image description here



I have gone as far as



documentclass[margin=3mm,tikz]{standalone}
begin{document}
begin{tikzpicture}
draw (0,0)--(-2,0);
draw (0,-2)--(-2,-2);
draw[thin] (0,0)--(0,-2);
draw (0,0)--(1.5,1)--(3.5,1);
draw (0,-2)--(1.5,-3)--(3.5,-3);
draw[thin] (1.5,1)--(1.5,-3);
draw (-2,-2) to[out=130,in=-130] (-2,-1) to[out=130,in=-130] (-2,0);
draw[very thin] (-2,-1) to[out=50,in=-50] (-2,0);
draw (3.5,1) to[out=-50,in=50] (3.5,-1) to[out=-50,in=50] (3.5,-3);
draw[very thin] (3.5,-1) to[out=-130,in=130] (3.5,-3);
end{tikzpicture}
end{document}


enter image description here



but I got stuck when I tried to insert the numbers and the small lines. They should have accurate slopes, and,



enter image description here



the red line and the blue line should not meet the green line at the same point.



These criterias are too difficult and complicated for me to overpass.



Can you help me? Any help is very appreciated.










share|improve this question









New contributor




Someone is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
















  • 2





    Welcome to TeX.SX! It's good that you provided a minimal working example (MWE), but your title could be more descriptive.

    – dexteritas
    yesterday






  • 2





    Title is amended

    – KJO
    yesterday






  • 4





    Note: this is a sleeve and thimble scale, but not a vernier scale. A vernier scale would involve drawing yet another set of lines. e.g., wonkeedonkeetools.co.uk/media/wysiwyg/…

    – Jerry Coffin
    yesterday






  • 1





    @JerryCoffin I know, but it was more eye catching on the tongue than simply how to draw "this" and sleeve and thimble was too wieldy but I can change it if you think its best to aim for finer precision :-)

    – KJO
    yesterday











  • I agree with @JerryCoffin. An accurate title would be "micrometer". For an example of a Vernier micrometer, see: en.wikipedia.org/wiki/Vernier_scale

    – Dithermaster
    2 hours ago
















22















How to draw these two figures in TikZ?



enter image description here



I have gone as far as



documentclass[margin=3mm,tikz]{standalone}
begin{document}
begin{tikzpicture}
draw (0,0)--(-2,0);
draw (0,-2)--(-2,-2);
draw[thin] (0,0)--(0,-2);
draw (0,0)--(1.5,1)--(3.5,1);
draw (0,-2)--(1.5,-3)--(3.5,-3);
draw[thin] (1.5,1)--(1.5,-3);
draw (-2,-2) to[out=130,in=-130] (-2,-1) to[out=130,in=-130] (-2,0);
draw[very thin] (-2,-1) to[out=50,in=-50] (-2,0);
draw (3.5,1) to[out=-50,in=50] (3.5,-1) to[out=-50,in=50] (3.5,-3);
draw[very thin] (3.5,-1) to[out=-130,in=130] (3.5,-3);
end{tikzpicture}
end{document}


enter image description here



but I got stuck when I tried to insert the numbers and the small lines. They should have accurate slopes, and,



enter image description here



the red line and the blue line should not meet the green line at the same point.



These criterias are too difficult and complicated for me to overpass.



Can you help me? Any help is very appreciated.










share|improve this question









New contributor




Someone is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
















  • 2





    Welcome to TeX.SX! It's good that you provided a minimal working example (MWE), but your title could be more descriptive.

    – dexteritas
    yesterday






  • 2





    Title is amended

    – KJO
    yesterday






  • 4





    Note: this is a sleeve and thimble scale, but not a vernier scale. A vernier scale would involve drawing yet another set of lines. e.g., wonkeedonkeetools.co.uk/media/wysiwyg/…

    – Jerry Coffin
    yesterday






  • 1





    @JerryCoffin I know, but it was more eye catching on the tongue than simply how to draw "this" and sleeve and thimble was too wieldy but I can change it if you think its best to aim for finer precision :-)

    – KJO
    yesterday











  • I agree with @JerryCoffin. An accurate title would be "micrometer". For an example of a Vernier micrometer, see: en.wikipedia.org/wiki/Vernier_scale

    – Dithermaster
    2 hours ago














22












22








22


5






How to draw these two figures in TikZ?



enter image description here



I have gone as far as



documentclass[margin=3mm,tikz]{standalone}
begin{document}
begin{tikzpicture}
draw (0,0)--(-2,0);
draw (0,-2)--(-2,-2);
draw[thin] (0,0)--(0,-2);
draw (0,0)--(1.5,1)--(3.5,1);
draw (0,-2)--(1.5,-3)--(3.5,-3);
draw[thin] (1.5,1)--(1.5,-3);
draw (-2,-2) to[out=130,in=-130] (-2,-1) to[out=130,in=-130] (-2,0);
draw[very thin] (-2,-1) to[out=50,in=-50] (-2,0);
draw (3.5,1) to[out=-50,in=50] (3.5,-1) to[out=-50,in=50] (3.5,-3);
draw[very thin] (3.5,-1) to[out=-130,in=130] (3.5,-3);
end{tikzpicture}
end{document}


enter image description here



but I got stuck when I tried to insert the numbers and the small lines. They should have accurate slopes, and,



enter image description here



the red line and the blue line should not meet the green line at the same point.



These criterias are too difficult and complicated for me to overpass.



Can you help me? Any help is very appreciated.










share|improve this question









New contributor




Someone is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












How to draw these two figures in TikZ?



enter image description here



I have gone as far as



documentclass[margin=3mm,tikz]{standalone}
begin{document}
begin{tikzpicture}
draw (0,0)--(-2,0);
draw (0,-2)--(-2,-2);
draw[thin] (0,0)--(0,-2);
draw (0,0)--(1.5,1)--(3.5,1);
draw (0,-2)--(1.5,-3)--(3.5,-3);
draw[thin] (1.5,1)--(1.5,-3);
draw (-2,-2) to[out=130,in=-130] (-2,-1) to[out=130,in=-130] (-2,0);
draw[very thin] (-2,-1) to[out=50,in=-50] (-2,0);
draw (3.5,1) to[out=-50,in=50] (3.5,-1) to[out=-50,in=50] (3.5,-3);
draw[very thin] (3.5,-1) to[out=-130,in=130] (3.5,-3);
end{tikzpicture}
end{document}


enter image description here



but I got stuck when I tried to insert the numbers and the small lines. They should have accurate slopes, and,



enter image description here



the red line and the blue line should not meet the green line at the same point.



These criterias are too difficult and complicated for me to overpass.



Can you help me? Any help is very appreciated.







tikz-pgf






share|improve this question









New contributor




Someone is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




Someone is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 40 mins ago









KJO

2,0921118




2,0921118






New contributor




Someone is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked yesterday









SomeoneSomeone

1112




1112




New contributor




Someone is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Someone is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Someone is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 2





    Welcome to TeX.SX! It's good that you provided a minimal working example (MWE), but your title could be more descriptive.

    – dexteritas
    yesterday






  • 2





    Title is amended

    – KJO
    yesterday






  • 4





    Note: this is a sleeve and thimble scale, but not a vernier scale. A vernier scale would involve drawing yet another set of lines. e.g., wonkeedonkeetools.co.uk/media/wysiwyg/…

    – Jerry Coffin
    yesterday






  • 1





    @JerryCoffin I know, but it was more eye catching on the tongue than simply how to draw "this" and sleeve and thimble was too wieldy but I can change it if you think its best to aim for finer precision :-)

    – KJO
    yesterday











  • I agree with @JerryCoffin. An accurate title would be "micrometer". For an example of a Vernier micrometer, see: en.wikipedia.org/wiki/Vernier_scale

    – Dithermaster
    2 hours ago














  • 2





    Welcome to TeX.SX! It's good that you provided a minimal working example (MWE), but your title could be more descriptive.

    – dexteritas
    yesterday






  • 2





    Title is amended

    – KJO
    yesterday






  • 4





    Note: this is a sleeve and thimble scale, but not a vernier scale. A vernier scale would involve drawing yet another set of lines. e.g., wonkeedonkeetools.co.uk/media/wysiwyg/…

    – Jerry Coffin
    yesterday






  • 1





    @JerryCoffin I know, but it was more eye catching on the tongue than simply how to draw "this" and sleeve and thimble was too wieldy but I can change it if you think its best to aim for finer precision :-)

    – KJO
    yesterday











  • I agree with @JerryCoffin. An accurate title would be "micrometer". For an example of a Vernier micrometer, see: en.wikipedia.org/wiki/Vernier_scale

    – Dithermaster
    2 hours ago








2




2





Welcome to TeX.SX! It's good that you provided a minimal working example (MWE), but your title could be more descriptive.

– dexteritas
yesterday





Welcome to TeX.SX! It's good that you provided a minimal working example (MWE), but your title could be more descriptive.

– dexteritas
yesterday




2




2





Title is amended

– KJO
yesterday





Title is amended

– KJO
yesterday




4




4





Note: this is a sleeve and thimble scale, but not a vernier scale. A vernier scale would involve drawing yet another set of lines. e.g., wonkeedonkeetools.co.uk/media/wysiwyg/…

– Jerry Coffin
yesterday





Note: this is a sleeve and thimble scale, but not a vernier scale. A vernier scale would involve drawing yet another set of lines. e.g., wonkeedonkeetools.co.uk/media/wysiwyg/…

– Jerry Coffin
yesterday




1




1





@JerryCoffin I know, but it was more eye catching on the tongue than simply how to draw "this" and sleeve and thimble was too wieldy but I can change it if you think its best to aim for finer precision :-)

– KJO
yesterday





@JerryCoffin I know, but it was more eye catching on the tongue than simply how to draw "this" and sleeve and thimble was too wieldy but I can change it if you think its best to aim for finer precision :-)

– KJO
yesterday













I agree with @JerryCoffin. An accurate title would be "micrometer". For an example of a Vernier micrometer, see: en.wikipedia.org/wiki/Vernier_scale

– Dithermaster
2 hours ago





I agree with @JerryCoffin. An accurate title would be "micrometer". For an example of a Vernier micrometer, see: en.wikipedia.org/wiki/Vernier_scale

– Dithermaster
2 hours ago










3 Answers
3






active

oldest

votes


















22














Adaptions:




  • I set the orign to the "0" of the horizontal scale.


Description:




  • added 3 parameters:



    • lenx is the horizontal length


    • xscale is the scaling of one horizontal length unit


    • startrange is the starting number of the vertical scale



  • for loops and modulo calculations are used for drawing the scales


Code:



documentclass[margin=3mm,tikz]{standalone}

begin{document}

newcommand{lenx}{5.3} % e.g.: 0.4 or 5.3
newcommand{xscale}{.2}
newcommand{startrange}{0} % e.g.: 0 or 7

begin{tikzpicture}
% scale right
foreach i in {1, ..., 18} {
pgfmathparse{Mod(i-1+startrange,5)==0?1:0}
ifnumpgfmathresult>0
% long line with number
draw[blue] (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.5, -1+i*2.5/19 -.25) node[right]{pgfmathparse{int(i-1+startrange)}pgfmathresult};%
else
% short line
draw[blue] (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.25, -1+i*2.25/19 -.125);
fi
}

% horizontal scale (left)
draw[red] (0,0) -- (lenx*xscale,0);
draw[thick] (0,.3) -- (0,-.15) node[below]{0};
pgfmathparse{int(lenx)}
foreach i in {0, ..., pgfmathresult} {
pgfmathparse{Mod(i,2)==0?1:0}
ifnumpgfmathresult>0
draw (i*xscale,0) -- (i*xscale,.15);
else
draw (i*xscale,0) -- (i*xscale,-.15);
fi
}

% borders
draw[thin, green] (lenx*xscale,1)--(lenx*xscale,-1);
draw (-.5,1)--(lenx*xscale,1);
draw (-.5,-1)--(lenx*xscale,-1);

draw (lenx*xscale,1)--++(1.5,1)--++(2,0);
draw (lenx*xscale,-1)--++(1.5,-1)--++(2,0);
draw[thin] (lenx*xscale+1.5,2)--++(0,-4);

% curvy lines (left and right)
draw (-.5,-1) to[out=130,in=-130] (-.5,0) to[out=130,in=-130] (-.5,1);
draw[very thin] (-.5,0) to[out=50,in=-50] (-.5,1);
draw (lenx*xscale+3.5,2) to[out=-50,in=50] (lenx*xscale+3.5,0) to[out=-50,in=50] (lenx*xscale+3.5,-2);
draw[very thin] (lenx*xscale+3.5,0) to[out=-130,in=130] (lenx*xscale+3.5,-2);
end{tikzpicture}
end{document}


Results:



enter image description here






share|improve this answer































    20














    This is an attempt of a 3d answer. I acknowledge and appreciate comments by KJO that made me realize that this is not really realistic and by Raaja that made me choose a perhaps more intuitive offset. ;-)



    documentclass[tikz,border=3.14mm]{standalone}
    usepackage{tikz-3dplot}
    usetikzlibrary{3d,calc}

    begin{document}

    tdplotsetmaincoords{00}{00}
    foreach Z in {1.5,3,...,30,28.5,27,...,3}
    {tdplotsetrotatedcoords{0}{Z}{00}
    pgfmathsetmacro{VernierLength}{Z/2} % <- this is the length in mm you want to show
    begin{tikzpicture}[tdplot_rotated_coords,font=sffamily]
    % begin{scope}[xshift=-5cm]
    % draw[-latex] (0,0,0) -- (1,0,0) node[pos=1.1]{$x$};
    % draw[-latex] (0,0,0) -- (0,1,0) node[pos=1.1]{$y$};
    % draw[-latex] (0,0,0) -- (0,0,1) node[pos=1.1]{$z$};
    % end{scope}
    path[tdplot_screen_coords,use as bounding box] (-3,-3) rectangle (5,3);
    path[tdplot_screen_coords] (5,3) node[anchor=north east]
    {$mathsf{L}=VernierLength$};
    begin{scope}
    begin{scope}[canvas is yz plane at x=0]
    path (0,0) coordinate (M1);
    draw (180:1) arc(180:0:1);
    end{scope}
    begin{scope}[canvas is yz plane at x=1.5]
    path (0,0) coordinate (M2);
    draw let p1=($(M2)-(M1)$),n1={0*atan2(y1,x1)+atan2(1,1.5)/2.5} in
    ($(M1)+(-n1/2:1)$) coordinate (TL) -- ($(M2)+(-n1/2:2)$) coordinate (TR)
    ($(M1)+(180+n1/2:1)$) coordinate (BL) -- ($(M2)+(180+n1/2:2)$) coordinate (BR)
    (BR) arc(180+n1/2:-n1/2:2);
    end{scope}
    begin{scope}
    draw plot[variable=t,domain=0:360,smooth]
    (-VernierLength/10-0.5,{cos(t)},{sin(t)});
    draw[clip] plot[variable=t,domain=0:180,smooth]
    (-VernierLength/10-0.5,{cos(t)},{sin(t)})
    -- plot[variable=t,domain=180:0,smooth]
    (0,{cos(t)},{sin(t)}) -- cycle;
    draw[thick] (-VernierLength/10,0,1) -- (0,0,1)
    plot[variable=t,domain=60:110,smooth]
    (-VernierLength/10,{cos(t)},{sin(t)});
    path let
    p1=($(-VernierLength/10,{cos(120)},{sin(120)})-(-VernierLength/10,{cos(110)},{sin(110)})$),
    n1={90+atan2(y1,x1)} in (-VernierLength/10,{cos(120)},{sin(120)})
    node[rotate=n1,yscale={cos(30)},transform shape]{0};
    pgfmathtruncatemacro{Xmax}{VernierLength/2}
    ifnumXmax>0
    foreach X in {1,...,Xmax}
    {ifoddX
    draw plot[variable=t,domain=90:110,smooth]
    (-VernierLength/10+X/5,{cos(t)},{sin(t)});
    % path let
    % p1=($(-VernierLength/10+X/5,{cos(120)},{sin(120)})-(-VernierLength/10+X/5,{cos(110)},{sin(110)})$),
    % n1={90+atan2(y1,x1)} in (-VernierLength/10+X/5,{cos(120)},{sin(120)})
    % node[rotate=n1,yscale={cos(30)},transform shape]{X};
    else
    draw plot[variable=t,domain=90:70,smooth]
    (-VernierLength/10+X/5,{cos(t)},{sin(t)});
    % path let
    % p1=($(-VernierLength/10+X/5,{cos(60)},{sin(60)})-(-VernierLength/10+X/5,{cos(70)},{sin(70)})$),
    % n1={-90+atan2(y1,x1)} in (-VernierLength/10+X/5,{cos(60)},{sin(60)})
    % node[rotate=n1,yscale={cos(30)},transform shape]{X};
    fi
    }
    fi
    end{scope}
    %
    begin{scope}[canvas is yz plane at x=3.5]
    path (0,0) coordinate (M3);
    draw (180:2) arc(180:0:2);
    draw ($(M2)+(0:2)$) -- ($(M3)+(0:2)$)
    ($(M2)+(180:2)$) -- ($(M3)+(180:2)$);
    end{scope}
    pgfmathtruncatemacro{Offset}{180+10*VernierLength*7.2-12.5*7.2}
    pgfmathtruncatemacro{Xmin}{10*VernierLength+1-12.5}
    pgfmathtruncatemacro{Xmax}{Xmin+23}
    foreach X [evaluate=X as Y using {int(mod(X,5))},
    evaluate=X as LX using {int(mod(X,50))}] in {Xmin,...,Xmax}
    {ifnumY=0
    draw[thin] let
    p1=($(0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})-
    (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})$),
    p2=($(0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})-
    (0.6,{(1+0.4)*cos(Offset-X*7.2+1)},{(1+0.4)*sin(Offset-X*7.2+1)})$),
    p3=($(0.6,{0},{(1+0.4)})-
    (0.6,{(1+0.4)*cos(91)},{(1+0.4)*sin(91)})$),
    n1={atan2(y1,x1)},n2={veclen(x2,y2)/veclen(x3,y3)} in
    (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})
    -- (0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})
    node[pos=1.5,rotate=n1,yscale={n2},transform shape]{LX};
    else
    draw[thin] (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})
    -- (0.3,{(1+0.2)*cos(Offset-X*7.2)},{(1+0.2)*sin(Offset-X*7.2)});
    fi}
    end{scope}
    end{tikzpicture}}
    end{document}


    enter image description here



    And here is a trick to draw the ticks. Call the point where the diagonal points intersect P. Then the ticks point to this point. Of course, in the end you want to remove the excess lines by clipping.



    documentclass[tikz,border=3.14mm]{standalone}
    usetikzlibrary{calc}
    begin{document}
    begin{tikzpicture}[font=sffamily]
    draw (0,0)--(-2,0) (0,-2)--(-2,-2);
    draw[thin] (0,0)--(0,-2);
    draw (0,0)coordinate (TL) --(1.5,1) coordinate (TR) --(3.5,1) ;
    draw (0,-2) coordinate (BL)--(1.5,-3) coordinate (BR) --(3.5,-3) ;
    draw[thin] (1.5,1)--(1.5,-3);
    draw (-2,-2) to[out=130,in=-130] (-2,-1) to[out=130,in=-130] (-2,0);
    draw[very thin] (-2,-1) to[out=50,in=-50] (-2,0);
    draw (3.5,1) to[out=-50,in=50] (3.5,-1) to[out=-50,in=50] (3.5,-3);
    draw[very thin] (3.5,-1) to[out=-130,in=130] (3.5,-3);
    path (intersection cs:first line={(TL)--(TR)}, second line={(BL)--(BR)})
    coordinate (P);
    clip (TL) -- (TR) -- (BR) -- (BL) -- cycle;
    foreach X [evaluate=X as Y using {int(mod(X,5))}] in {1,...,17}
    {ifnumY=0
    draw[shorten >=-20pt] (P) -- (0,-2+X/9) node[pos=1.65]{X};
    else
    draw[shorten >=-7pt] (P) -- (0,-2+X/9);
    fi }
    end{tikzpicture}
    end{document}


    enter image description here






    share|improve this answer





















    • 1





      @KJO Good thinking! (My above comment was also an attempt of being polite and saying I am not sure that any of the drawings so far, including mine, are accurate. I believe one should draw the thingy in 3d and then project on the screen. That way the outer lines should be closer and the inner ones further apart.)

      – marmot
      yesterday






    • 1





      @marmot I didnt thought about clipping part :/ I was looking to make it grow along y-axis and failed miserably (sob!).

      – Raaja
      yesterday






    • 1





      Its a truncated cone for reality check commons.wikimedia.org/wiki/File:578metric-micrometer.jpg#/media/…

      – KJO
      yesterday






    • 4





      @marmot Naaice!

      – Raaja
      yesterday






    • 1





      @KJO I think Ulrike Fischer will be in charge of the weather ;-)

      – marmot
      yesterday



















    16














    A PSTricks solution just for fun purposes. I focus on the scale. The aesthetic aspects are too trivial.



    documentclass[pstricks,border=12pt,12pt]{standalone}
    usepackage{multido}
    usepackage[nomessages]{fp}

    makeatletter
    defvernier#1{%
    begingroup
    psset{yunit=2mm,xunit=1mm,linecolor=red,linewidth=.8pt,linecap=0}
    pspolygon[fillcolor=yellow,fillstyle=solid,opacity=.9,linestyle=none,linewidth=.8pt,linearc=1pt](0,-6)(0,6)(6,7.5)(10,7.5)(10,-7.5)(6,-7.5)
    multido{iy=-5+1,in={numexpr#1-5relax}+1}{11}{%
    pst@modin{50}lbl
    pst@modlbl{5}tmp
    psline(0,iy)(!tmpspace 0 ne {2} {5} ifelse iyspace)
    ifnumtmp=0uput[0](3.5,iy){textcolor{red}{$lbl$}}fi
    }
    psline(.5pslinewidth,-5)(.5pslinewidth,5)
    endgroup
    }

    newcommandmicrometer[1]{%
    bgroup
    psset{xunit=.2mm,yunit=1cm,linewidth=1.6pt}
    begin{pspicture}[linecolor=black,linecap=2](0,-1.3)(150,1.7)
    FPevalargs{trunc(#1*100:0)}
    pst@mod{args}{100}position
    FPevallbl{trunc(args/100:0)}
    multido{ix=0+50}{4}{%
    pst@modix{100}rem
    ifnumrem=0
    psline(ix,-17pt)(ix,17pt)
    uput[90](ix,16pt){lbl}
    FPevallbl{trunc(lbl+1:0)}
    else
    pst@modix{50}rem
    ifnumrem=0
    psline(ix,-5pt)(ix,5pt)
    fi
    fi}
    psline(150,0)
    rput(dimexprpositionpsxunit-.4ptrelax,0){vernier{args}}
    rput(75,1.75){scriptsize#1}
    end{pspicture}
    egroup
    }
    makeatother

    begin{document}
    multido{n=3.00+0.01}{100}{micrometer{n}}
    %micrometer{2.34}
    end{document}


    enter image description here






    share|improve this answer



















    • 3





      +1. However, I think the OP only asks how to draw the figures :)

      – JouleV
      yesterday






    • 3





      @JouleV: I was not trying to answer the OP question. :-)

      – Artificial Stupidity
      yesterday






    • 5





      ... as usual ;-).

      – AlexG
      yesterday











    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "85"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });






    Someone is a new contributor. Be nice, and check out our Code of Conduct.










    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f472876%2fhow-to-draw-micrometer-scale-using-tikz%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    22














    Adaptions:




    • I set the orign to the "0" of the horizontal scale.


    Description:




    • added 3 parameters:



      • lenx is the horizontal length


      • xscale is the scaling of one horizontal length unit


      • startrange is the starting number of the vertical scale



    • for loops and modulo calculations are used for drawing the scales


    Code:



    documentclass[margin=3mm,tikz]{standalone}

    begin{document}

    newcommand{lenx}{5.3} % e.g.: 0.4 or 5.3
    newcommand{xscale}{.2}
    newcommand{startrange}{0} % e.g.: 0 or 7

    begin{tikzpicture}
    % scale right
    foreach i in {1, ..., 18} {
    pgfmathparse{Mod(i-1+startrange,5)==0?1:0}
    ifnumpgfmathresult>0
    % long line with number
    draw[blue] (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.5, -1+i*2.5/19 -.25) node[right]{pgfmathparse{int(i-1+startrange)}pgfmathresult};%
    else
    % short line
    draw[blue] (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.25, -1+i*2.25/19 -.125);
    fi
    }

    % horizontal scale (left)
    draw[red] (0,0) -- (lenx*xscale,0);
    draw[thick] (0,.3) -- (0,-.15) node[below]{0};
    pgfmathparse{int(lenx)}
    foreach i in {0, ..., pgfmathresult} {
    pgfmathparse{Mod(i,2)==0?1:0}
    ifnumpgfmathresult>0
    draw (i*xscale,0) -- (i*xscale,.15);
    else
    draw (i*xscale,0) -- (i*xscale,-.15);
    fi
    }

    % borders
    draw[thin, green] (lenx*xscale,1)--(lenx*xscale,-1);
    draw (-.5,1)--(lenx*xscale,1);
    draw (-.5,-1)--(lenx*xscale,-1);

    draw (lenx*xscale,1)--++(1.5,1)--++(2,0);
    draw (lenx*xscale,-1)--++(1.5,-1)--++(2,0);
    draw[thin] (lenx*xscale+1.5,2)--++(0,-4);

    % curvy lines (left and right)
    draw (-.5,-1) to[out=130,in=-130] (-.5,0) to[out=130,in=-130] (-.5,1);
    draw[very thin] (-.5,0) to[out=50,in=-50] (-.5,1);
    draw (lenx*xscale+3.5,2) to[out=-50,in=50] (lenx*xscale+3.5,0) to[out=-50,in=50] (lenx*xscale+3.5,-2);
    draw[very thin] (lenx*xscale+3.5,0) to[out=-130,in=130] (lenx*xscale+3.5,-2);
    end{tikzpicture}
    end{document}


    Results:



    enter image description here






    share|improve this answer




























      22














      Adaptions:




      • I set the orign to the "0" of the horizontal scale.


      Description:




      • added 3 parameters:



        • lenx is the horizontal length


        • xscale is the scaling of one horizontal length unit


        • startrange is the starting number of the vertical scale



      • for loops and modulo calculations are used for drawing the scales


      Code:



      documentclass[margin=3mm,tikz]{standalone}

      begin{document}

      newcommand{lenx}{5.3} % e.g.: 0.4 or 5.3
      newcommand{xscale}{.2}
      newcommand{startrange}{0} % e.g.: 0 or 7

      begin{tikzpicture}
      % scale right
      foreach i in {1, ..., 18} {
      pgfmathparse{Mod(i-1+startrange,5)==0?1:0}
      ifnumpgfmathresult>0
      % long line with number
      draw[blue] (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.5, -1+i*2.5/19 -.25) node[right]{pgfmathparse{int(i-1+startrange)}pgfmathresult};%
      else
      % short line
      draw[blue] (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.25, -1+i*2.25/19 -.125);
      fi
      }

      % horizontal scale (left)
      draw[red] (0,0) -- (lenx*xscale,0);
      draw[thick] (0,.3) -- (0,-.15) node[below]{0};
      pgfmathparse{int(lenx)}
      foreach i in {0, ..., pgfmathresult} {
      pgfmathparse{Mod(i,2)==0?1:0}
      ifnumpgfmathresult>0
      draw (i*xscale,0) -- (i*xscale,.15);
      else
      draw (i*xscale,0) -- (i*xscale,-.15);
      fi
      }

      % borders
      draw[thin, green] (lenx*xscale,1)--(lenx*xscale,-1);
      draw (-.5,1)--(lenx*xscale,1);
      draw (-.5,-1)--(lenx*xscale,-1);

      draw (lenx*xscale,1)--++(1.5,1)--++(2,0);
      draw (lenx*xscale,-1)--++(1.5,-1)--++(2,0);
      draw[thin] (lenx*xscale+1.5,2)--++(0,-4);

      % curvy lines (left and right)
      draw (-.5,-1) to[out=130,in=-130] (-.5,0) to[out=130,in=-130] (-.5,1);
      draw[very thin] (-.5,0) to[out=50,in=-50] (-.5,1);
      draw (lenx*xscale+3.5,2) to[out=-50,in=50] (lenx*xscale+3.5,0) to[out=-50,in=50] (lenx*xscale+3.5,-2);
      draw[very thin] (lenx*xscale+3.5,0) to[out=-130,in=130] (lenx*xscale+3.5,-2);
      end{tikzpicture}
      end{document}


      Results:



      enter image description here






      share|improve this answer


























        22












        22








        22







        Adaptions:




        • I set the orign to the "0" of the horizontal scale.


        Description:




        • added 3 parameters:



          • lenx is the horizontal length


          • xscale is the scaling of one horizontal length unit


          • startrange is the starting number of the vertical scale



        • for loops and modulo calculations are used for drawing the scales


        Code:



        documentclass[margin=3mm,tikz]{standalone}

        begin{document}

        newcommand{lenx}{5.3} % e.g.: 0.4 or 5.3
        newcommand{xscale}{.2}
        newcommand{startrange}{0} % e.g.: 0 or 7

        begin{tikzpicture}
        % scale right
        foreach i in {1, ..., 18} {
        pgfmathparse{Mod(i-1+startrange,5)==0?1:0}
        ifnumpgfmathresult>0
        % long line with number
        draw[blue] (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.5, -1+i*2.5/19 -.25) node[right]{pgfmathparse{int(i-1+startrange)}pgfmathresult};%
        else
        % short line
        draw[blue] (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.25, -1+i*2.25/19 -.125);
        fi
        }

        % horizontal scale (left)
        draw[red] (0,0) -- (lenx*xscale,0);
        draw[thick] (0,.3) -- (0,-.15) node[below]{0};
        pgfmathparse{int(lenx)}
        foreach i in {0, ..., pgfmathresult} {
        pgfmathparse{Mod(i,2)==0?1:0}
        ifnumpgfmathresult>0
        draw (i*xscale,0) -- (i*xscale,.15);
        else
        draw (i*xscale,0) -- (i*xscale,-.15);
        fi
        }

        % borders
        draw[thin, green] (lenx*xscale,1)--(lenx*xscale,-1);
        draw (-.5,1)--(lenx*xscale,1);
        draw (-.5,-1)--(lenx*xscale,-1);

        draw (lenx*xscale,1)--++(1.5,1)--++(2,0);
        draw (lenx*xscale,-1)--++(1.5,-1)--++(2,0);
        draw[thin] (lenx*xscale+1.5,2)--++(0,-4);

        % curvy lines (left and right)
        draw (-.5,-1) to[out=130,in=-130] (-.5,0) to[out=130,in=-130] (-.5,1);
        draw[very thin] (-.5,0) to[out=50,in=-50] (-.5,1);
        draw (lenx*xscale+3.5,2) to[out=-50,in=50] (lenx*xscale+3.5,0) to[out=-50,in=50] (lenx*xscale+3.5,-2);
        draw[very thin] (lenx*xscale+3.5,0) to[out=-130,in=130] (lenx*xscale+3.5,-2);
        end{tikzpicture}
        end{document}


        Results:



        enter image description here






        share|improve this answer













        Adaptions:




        • I set the orign to the "0" of the horizontal scale.


        Description:




        • added 3 parameters:



          • lenx is the horizontal length


          • xscale is the scaling of one horizontal length unit


          • startrange is the starting number of the vertical scale



        • for loops and modulo calculations are used for drawing the scales


        Code:



        documentclass[margin=3mm,tikz]{standalone}

        begin{document}

        newcommand{lenx}{5.3} % e.g.: 0.4 or 5.3
        newcommand{xscale}{.2}
        newcommand{startrange}{0} % e.g.: 0 or 7

        begin{tikzpicture}
        % scale right
        foreach i in {1, ..., 18} {
        pgfmathparse{Mod(i-1+startrange,5)==0?1:0}
        ifnumpgfmathresult>0
        % long line with number
        draw[blue] (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.5, -1+i*2.5/19 -.25) node[right]{pgfmathparse{int(i-1+startrange)}pgfmathresult};%
        else
        % short line
        draw[blue] (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.25, -1+i*2.25/19 -.125);
        fi
        }

        % horizontal scale (left)
        draw[red] (0,0) -- (lenx*xscale,0);
        draw[thick] (0,.3) -- (0,-.15) node[below]{0};
        pgfmathparse{int(lenx)}
        foreach i in {0, ..., pgfmathresult} {
        pgfmathparse{Mod(i,2)==0?1:0}
        ifnumpgfmathresult>0
        draw (i*xscale,0) -- (i*xscale,.15);
        else
        draw (i*xscale,0) -- (i*xscale,-.15);
        fi
        }

        % borders
        draw[thin, green] (lenx*xscale,1)--(lenx*xscale,-1);
        draw (-.5,1)--(lenx*xscale,1);
        draw (-.5,-1)--(lenx*xscale,-1);

        draw (lenx*xscale,1)--++(1.5,1)--++(2,0);
        draw (lenx*xscale,-1)--++(1.5,-1)--++(2,0);
        draw[thin] (lenx*xscale+1.5,2)--++(0,-4);

        % curvy lines (left and right)
        draw (-.5,-1) to[out=130,in=-130] (-.5,0) to[out=130,in=-130] (-.5,1);
        draw[very thin] (-.5,0) to[out=50,in=-50] (-.5,1);
        draw (lenx*xscale+3.5,2) to[out=-50,in=50] (lenx*xscale+3.5,0) to[out=-50,in=50] (lenx*xscale+3.5,-2);
        draw[very thin] (lenx*xscale+3.5,0) to[out=-130,in=130] (lenx*xscale+3.5,-2);
        end{tikzpicture}
        end{document}


        Results:



        enter image description here







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered yesterday









        dexteritasdexteritas

        3,647927




        3,647927























            20














            This is an attempt of a 3d answer. I acknowledge and appreciate comments by KJO that made me realize that this is not really realistic and by Raaja that made me choose a perhaps more intuitive offset. ;-)



            documentclass[tikz,border=3.14mm]{standalone}
            usepackage{tikz-3dplot}
            usetikzlibrary{3d,calc}

            begin{document}

            tdplotsetmaincoords{00}{00}
            foreach Z in {1.5,3,...,30,28.5,27,...,3}
            {tdplotsetrotatedcoords{0}{Z}{00}
            pgfmathsetmacro{VernierLength}{Z/2} % <- this is the length in mm you want to show
            begin{tikzpicture}[tdplot_rotated_coords,font=sffamily]
            % begin{scope}[xshift=-5cm]
            % draw[-latex] (0,0,0) -- (1,0,0) node[pos=1.1]{$x$};
            % draw[-latex] (0,0,0) -- (0,1,0) node[pos=1.1]{$y$};
            % draw[-latex] (0,0,0) -- (0,0,1) node[pos=1.1]{$z$};
            % end{scope}
            path[tdplot_screen_coords,use as bounding box] (-3,-3) rectangle (5,3);
            path[tdplot_screen_coords] (5,3) node[anchor=north east]
            {$mathsf{L}=VernierLength$};
            begin{scope}
            begin{scope}[canvas is yz plane at x=0]
            path (0,0) coordinate (M1);
            draw (180:1) arc(180:0:1);
            end{scope}
            begin{scope}[canvas is yz plane at x=1.5]
            path (0,0) coordinate (M2);
            draw let p1=($(M2)-(M1)$),n1={0*atan2(y1,x1)+atan2(1,1.5)/2.5} in
            ($(M1)+(-n1/2:1)$) coordinate (TL) -- ($(M2)+(-n1/2:2)$) coordinate (TR)
            ($(M1)+(180+n1/2:1)$) coordinate (BL) -- ($(M2)+(180+n1/2:2)$) coordinate (BR)
            (BR) arc(180+n1/2:-n1/2:2);
            end{scope}
            begin{scope}
            draw plot[variable=t,domain=0:360,smooth]
            (-VernierLength/10-0.5,{cos(t)},{sin(t)});
            draw[clip] plot[variable=t,domain=0:180,smooth]
            (-VernierLength/10-0.5,{cos(t)},{sin(t)})
            -- plot[variable=t,domain=180:0,smooth]
            (0,{cos(t)},{sin(t)}) -- cycle;
            draw[thick] (-VernierLength/10,0,1) -- (0,0,1)
            plot[variable=t,domain=60:110,smooth]
            (-VernierLength/10,{cos(t)},{sin(t)});
            path let
            p1=($(-VernierLength/10,{cos(120)},{sin(120)})-(-VernierLength/10,{cos(110)},{sin(110)})$),
            n1={90+atan2(y1,x1)} in (-VernierLength/10,{cos(120)},{sin(120)})
            node[rotate=n1,yscale={cos(30)},transform shape]{0};
            pgfmathtruncatemacro{Xmax}{VernierLength/2}
            ifnumXmax>0
            foreach X in {1,...,Xmax}
            {ifoddX
            draw plot[variable=t,domain=90:110,smooth]
            (-VernierLength/10+X/5,{cos(t)},{sin(t)});
            % path let
            % p1=($(-VernierLength/10+X/5,{cos(120)},{sin(120)})-(-VernierLength/10+X/5,{cos(110)},{sin(110)})$),
            % n1={90+atan2(y1,x1)} in (-VernierLength/10+X/5,{cos(120)},{sin(120)})
            % node[rotate=n1,yscale={cos(30)},transform shape]{X};
            else
            draw plot[variable=t,domain=90:70,smooth]
            (-VernierLength/10+X/5,{cos(t)},{sin(t)});
            % path let
            % p1=($(-VernierLength/10+X/5,{cos(60)},{sin(60)})-(-VernierLength/10+X/5,{cos(70)},{sin(70)})$),
            % n1={-90+atan2(y1,x1)} in (-VernierLength/10+X/5,{cos(60)},{sin(60)})
            % node[rotate=n1,yscale={cos(30)},transform shape]{X};
            fi
            }
            fi
            end{scope}
            %
            begin{scope}[canvas is yz plane at x=3.5]
            path (0,0) coordinate (M3);
            draw (180:2) arc(180:0:2);
            draw ($(M2)+(0:2)$) -- ($(M3)+(0:2)$)
            ($(M2)+(180:2)$) -- ($(M3)+(180:2)$);
            end{scope}
            pgfmathtruncatemacro{Offset}{180+10*VernierLength*7.2-12.5*7.2}
            pgfmathtruncatemacro{Xmin}{10*VernierLength+1-12.5}
            pgfmathtruncatemacro{Xmax}{Xmin+23}
            foreach X [evaluate=X as Y using {int(mod(X,5))},
            evaluate=X as LX using {int(mod(X,50))}] in {Xmin,...,Xmax}
            {ifnumY=0
            draw[thin] let
            p1=($(0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})-
            (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})$),
            p2=($(0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})-
            (0.6,{(1+0.4)*cos(Offset-X*7.2+1)},{(1+0.4)*sin(Offset-X*7.2+1)})$),
            p3=($(0.6,{0},{(1+0.4)})-
            (0.6,{(1+0.4)*cos(91)},{(1+0.4)*sin(91)})$),
            n1={atan2(y1,x1)},n2={veclen(x2,y2)/veclen(x3,y3)} in
            (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})
            -- (0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})
            node[pos=1.5,rotate=n1,yscale={n2},transform shape]{LX};
            else
            draw[thin] (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})
            -- (0.3,{(1+0.2)*cos(Offset-X*7.2)},{(1+0.2)*sin(Offset-X*7.2)});
            fi}
            end{scope}
            end{tikzpicture}}
            end{document}


            enter image description here



            And here is a trick to draw the ticks. Call the point where the diagonal points intersect P. Then the ticks point to this point. Of course, in the end you want to remove the excess lines by clipping.



            documentclass[tikz,border=3.14mm]{standalone}
            usetikzlibrary{calc}
            begin{document}
            begin{tikzpicture}[font=sffamily]
            draw (0,0)--(-2,0) (0,-2)--(-2,-2);
            draw[thin] (0,0)--(0,-2);
            draw (0,0)coordinate (TL) --(1.5,1) coordinate (TR) --(3.5,1) ;
            draw (0,-2) coordinate (BL)--(1.5,-3) coordinate (BR) --(3.5,-3) ;
            draw[thin] (1.5,1)--(1.5,-3);
            draw (-2,-2) to[out=130,in=-130] (-2,-1) to[out=130,in=-130] (-2,0);
            draw[very thin] (-2,-1) to[out=50,in=-50] (-2,0);
            draw (3.5,1) to[out=-50,in=50] (3.5,-1) to[out=-50,in=50] (3.5,-3);
            draw[very thin] (3.5,-1) to[out=-130,in=130] (3.5,-3);
            path (intersection cs:first line={(TL)--(TR)}, second line={(BL)--(BR)})
            coordinate (P);
            clip (TL) -- (TR) -- (BR) -- (BL) -- cycle;
            foreach X [evaluate=X as Y using {int(mod(X,5))}] in {1,...,17}
            {ifnumY=0
            draw[shorten >=-20pt] (P) -- (0,-2+X/9) node[pos=1.65]{X};
            else
            draw[shorten >=-7pt] (P) -- (0,-2+X/9);
            fi }
            end{tikzpicture}
            end{document}


            enter image description here






            share|improve this answer





















            • 1





              @KJO Good thinking! (My above comment was also an attempt of being polite and saying I am not sure that any of the drawings so far, including mine, are accurate. I believe one should draw the thingy in 3d and then project on the screen. That way the outer lines should be closer and the inner ones further apart.)

              – marmot
              yesterday






            • 1





              @marmot I didnt thought about clipping part :/ I was looking to make it grow along y-axis and failed miserably (sob!).

              – Raaja
              yesterday






            • 1





              Its a truncated cone for reality check commons.wikimedia.org/wiki/File:578metric-micrometer.jpg#/media/…

              – KJO
              yesterday






            • 4





              @marmot Naaice!

              – Raaja
              yesterday






            • 1





              @KJO I think Ulrike Fischer will be in charge of the weather ;-)

              – marmot
              yesterday
















            20














            This is an attempt of a 3d answer. I acknowledge and appreciate comments by KJO that made me realize that this is not really realistic and by Raaja that made me choose a perhaps more intuitive offset. ;-)



            documentclass[tikz,border=3.14mm]{standalone}
            usepackage{tikz-3dplot}
            usetikzlibrary{3d,calc}

            begin{document}

            tdplotsetmaincoords{00}{00}
            foreach Z in {1.5,3,...,30,28.5,27,...,3}
            {tdplotsetrotatedcoords{0}{Z}{00}
            pgfmathsetmacro{VernierLength}{Z/2} % <- this is the length in mm you want to show
            begin{tikzpicture}[tdplot_rotated_coords,font=sffamily]
            % begin{scope}[xshift=-5cm]
            % draw[-latex] (0,0,0) -- (1,0,0) node[pos=1.1]{$x$};
            % draw[-latex] (0,0,0) -- (0,1,0) node[pos=1.1]{$y$};
            % draw[-latex] (0,0,0) -- (0,0,1) node[pos=1.1]{$z$};
            % end{scope}
            path[tdplot_screen_coords,use as bounding box] (-3,-3) rectangle (5,3);
            path[tdplot_screen_coords] (5,3) node[anchor=north east]
            {$mathsf{L}=VernierLength$};
            begin{scope}
            begin{scope}[canvas is yz plane at x=0]
            path (0,0) coordinate (M1);
            draw (180:1) arc(180:0:1);
            end{scope}
            begin{scope}[canvas is yz plane at x=1.5]
            path (0,0) coordinate (M2);
            draw let p1=($(M2)-(M1)$),n1={0*atan2(y1,x1)+atan2(1,1.5)/2.5} in
            ($(M1)+(-n1/2:1)$) coordinate (TL) -- ($(M2)+(-n1/2:2)$) coordinate (TR)
            ($(M1)+(180+n1/2:1)$) coordinate (BL) -- ($(M2)+(180+n1/2:2)$) coordinate (BR)
            (BR) arc(180+n1/2:-n1/2:2);
            end{scope}
            begin{scope}
            draw plot[variable=t,domain=0:360,smooth]
            (-VernierLength/10-0.5,{cos(t)},{sin(t)});
            draw[clip] plot[variable=t,domain=0:180,smooth]
            (-VernierLength/10-0.5,{cos(t)},{sin(t)})
            -- plot[variable=t,domain=180:0,smooth]
            (0,{cos(t)},{sin(t)}) -- cycle;
            draw[thick] (-VernierLength/10,0,1) -- (0,0,1)
            plot[variable=t,domain=60:110,smooth]
            (-VernierLength/10,{cos(t)},{sin(t)});
            path let
            p1=($(-VernierLength/10,{cos(120)},{sin(120)})-(-VernierLength/10,{cos(110)},{sin(110)})$),
            n1={90+atan2(y1,x1)} in (-VernierLength/10,{cos(120)},{sin(120)})
            node[rotate=n1,yscale={cos(30)},transform shape]{0};
            pgfmathtruncatemacro{Xmax}{VernierLength/2}
            ifnumXmax>0
            foreach X in {1,...,Xmax}
            {ifoddX
            draw plot[variable=t,domain=90:110,smooth]
            (-VernierLength/10+X/5,{cos(t)},{sin(t)});
            % path let
            % p1=($(-VernierLength/10+X/5,{cos(120)},{sin(120)})-(-VernierLength/10+X/5,{cos(110)},{sin(110)})$),
            % n1={90+atan2(y1,x1)} in (-VernierLength/10+X/5,{cos(120)},{sin(120)})
            % node[rotate=n1,yscale={cos(30)},transform shape]{X};
            else
            draw plot[variable=t,domain=90:70,smooth]
            (-VernierLength/10+X/5,{cos(t)},{sin(t)});
            % path let
            % p1=($(-VernierLength/10+X/5,{cos(60)},{sin(60)})-(-VernierLength/10+X/5,{cos(70)},{sin(70)})$),
            % n1={-90+atan2(y1,x1)} in (-VernierLength/10+X/5,{cos(60)},{sin(60)})
            % node[rotate=n1,yscale={cos(30)},transform shape]{X};
            fi
            }
            fi
            end{scope}
            %
            begin{scope}[canvas is yz plane at x=3.5]
            path (0,0) coordinate (M3);
            draw (180:2) arc(180:0:2);
            draw ($(M2)+(0:2)$) -- ($(M3)+(0:2)$)
            ($(M2)+(180:2)$) -- ($(M3)+(180:2)$);
            end{scope}
            pgfmathtruncatemacro{Offset}{180+10*VernierLength*7.2-12.5*7.2}
            pgfmathtruncatemacro{Xmin}{10*VernierLength+1-12.5}
            pgfmathtruncatemacro{Xmax}{Xmin+23}
            foreach X [evaluate=X as Y using {int(mod(X,5))},
            evaluate=X as LX using {int(mod(X,50))}] in {Xmin,...,Xmax}
            {ifnumY=0
            draw[thin] let
            p1=($(0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})-
            (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})$),
            p2=($(0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})-
            (0.6,{(1+0.4)*cos(Offset-X*7.2+1)},{(1+0.4)*sin(Offset-X*7.2+1)})$),
            p3=($(0.6,{0},{(1+0.4)})-
            (0.6,{(1+0.4)*cos(91)},{(1+0.4)*sin(91)})$),
            n1={atan2(y1,x1)},n2={veclen(x2,y2)/veclen(x3,y3)} in
            (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})
            -- (0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})
            node[pos=1.5,rotate=n1,yscale={n2},transform shape]{LX};
            else
            draw[thin] (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})
            -- (0.3,{(1+0.2)*cos(Offset-X*7.2)},{(1+0.2)*sin(Offset-X*7.2)});
            fi}
            end{scope}
            end{tikzpicture}}
            end{document}


            enter image description here



            And here is a trick to draw the ticks. Call the point where the diagonal points intersect P. Then the ticks point to this point. Of course, in the end you want to remove the excess lines by clipping.



            documentclass[tikz,border=3.14mm]{standalone}
            usetikzlibrary{calc}
            begin{document}
            begin{tikzpicture}[font=sffamily]
            draw (0,0)--(-2,0) (0,-2)--(-2,-2);
            draw[thin] (0,0)--(0,-2);
            draw (0,0)coordinate (TL) --(1.5,1) coordinate (TR) --(3.5,1) ;
            draw (0,-2) coordinate (BL)--(1.5,-3) coordinate (BR) --(3.5,-3) ;
            draw[thin] (1.5,1)--(1.5,-3);
            draw (-2,-2) to[out=130,in=-130] (-2,-1) to[out=130,in=-130] (-2,0);
            draw[very thin] (-2,-1) to[out=50,in=-50] (-2,0);
            draw (3.5,1) to[out=-50,in=50] (3.5,-1) to[out=-50,in=50] (3.5,-3);
            draw[very thin] (3.5,-1) to[out=-130,in=130] (3.5,-3);
            path (intersection cs:first line={(TL)--(TR)}, second line={(BL)--(BR)})
            coordinate (P);
            clip (TL) -- (TR) -- (BR) -- (BL) -- cycle;
            foreach X [evaluate=X as Y using {int(mod(X,5))}] in {1,...,17}
            {ifnumY=0
            draw[shorten >=-20pt] (P) -- (0,-2+X/9) node[pos=1.65]{X};
            else
            draw[shorten >=-7pt] (P) -- (0,-2+X/9);
            fi }
            end{tikzpicture}
            end{document}


            enter image description here






            share|improve this answer





















            • 1





              @KJO Good thinking! (My above comment was also an attempt of being polite and saying I am not sure that any of the drawings so far, including mine, are accurate. I believe one should draw the thingy in 3d and then project on the screen. That way the outer lines should be closer and the inner ones further apart.)

              – marmot
              yesterday






            • 1





              @marmot I didnt thought about clipping part :/ I was looking to make it grow along y-axis and failed miserably (sob!).

              – Raaja
              yesterday






            • 1





              Its a truncated cone for reality check commons.wikimedia.org/wiki/File:578metric-micrometer.jpg#/media/…

              – KJO
              yesterday






            • 4





              @marmot Naaice!

              – Raaja
              yesterday






            • 1





              @KJO I think Ulrike Fischer will be in charge of the weather ;-)

              – marmot
              yesterday














            20












            20








            20







            This is an attempt of a 3d answer. I acknowledge and appreciate comments by KJO that made me realize that this is not really realistic and by Raaja that made me choose a perhaps more intuitive offset. ;-)



            documentclass[tikz,border=3.14mm]{standalone}
            usepackage{tikz-3dplot}
            usetikzlibrary{3d,calc}

            begin{document}

            tdplotsetmaincoords{00}{00}
            foreach Z in {1.5,3,...,30,28.5,27,...,3}
            {tdplotsetrotatedcoords{0}{Z}{00}
            pgfmathsetmacro{VernierLength}{Z/2} % <- this is the length in mm you want to show
            begin{tikzpicture}[tdplot_rotated_coords,font=sffamily]
            % begin{scope}[xshift=-5cm]
            % draw[-latex] (0,0,0) -- (1,0,0) node[pos=1.1]{$x$};
            % draw[-latex] (0,0,0) -- (0,1,0) node[pos=1.1]{$y$};
            % draw[-latex] (0,0,0) -- (0,0,1) node[pos=1.1]{$z$};
            % end{scope}
            path[tdplot_screen_coords,use as bounding box] (-3,-3) rectangle (5,3);
            path[tdplot_screen_coords] (5,3) node[anchor=north east]
            {$mathsf{L}=VernierLength$};
            begin{scope}
            begin{scope}[canvas is yz plane at x=0]
            path (0,0) coordinate (M1);
            draw (180:1) arc(180:0:1);
            end{scope}
            begin{scope}[canvas is yz plane at x=1.5]
            path (0,0) coordinate (M2);
            draw let p1=($(M2)-(M1)$),n1={0*atan2(y1,x1)+atan2(1,1.5)/2.5} in
            ($(M1)+(-n1/2:1)$) coordinate (TL) -- ($(M2)+(-n1/2:2)$) coordinate (TR)
            ($(M1)+(180+n1/2:1)$) coordinate (BL) -- ($(M2)+(180+n1/2:2)$) coordinate (BR)
            (BR) arc(180+n1/2:-n1/2:2);
            end{scope}
            begin{scope}
            draw plot[variable=t,domain=0:360,smooth]
            (-VernierLength/10-0.5,{cos(t)},{sin(t)});
            draw[clip] plot[variable=t,domain=0:180,smooth]
            (-VernierLength/10-0.5,{cos(t)},{sin(t)})
            -- plot[variable=t,domain=180:0,smooth]
            (0,{cos(t)},{sin(t)}) -- cycle;
            draw[thick] (-VernierLength/10,0,1) -- (0,0,1)
            plot[variable=t,domain=60:110,smooth]
            (-VernierLength/10,{cos(t)},{sin(t)});
            path let
            p1=($(-VernierLength/10,{cos(120)},{sin(120)})-(-VernierLength/10,{cos(110)},{sin(110)})$),
            n1={90+atan2(y1,x1)} in (-VernierLength/10,{cos(120)},{sin(120)})
            node[rotate=n1,yscale={cos(30)},transform shape]{0};
            pgfmathtruncatemacro{Xmax}{VernierLength/2}
            ifnumXmax>0
            foreach X in {1,...,Xmax}
            {ifoddX
            draw plot[variable=t,domain=90:110,smooth]
            (-VernierLength/10+X/5,{cos(t)},{sin(t)});
            % path let
            % p1=($(-VernierLength/10+X/5,{cos(120)},{sin(120)})-(-VernierLength/10+X/5,{cos(110)},{sin(110)})$),
            % n1={90+atan2(y1,x1)} in (-VernierLength/10+X/5,{cos(120)},{sin(120)})
            % node[rotate=n1,yscale={cos(30)},transform shape]{X};
            else
            draw plot[variable=t,domain=90:70,smooth]
            (-VernierLength/10+X/5,{cos(t)},{sin(t)});
            % path let
            % p1=($(-VernierLength/10+X/5,{cos(60)},{sin(60)})-(-VernierLength/10+X/5,{cos(70)},{sin(70)})$),
            % n1={-90+atan2(y1,x1)} in (-VernierLength/10+X/5,{cos(60)},{sin(60)})
            % node[rotate=n1,yscale={cos(30)},transform shape]{X};
            fi
            }
            fi
            end{scope}
            %
            begin{scope}[canvas is yz plane at x=3.5]
            path (0,0) coordinate (M3);
            draw (180:2) arc(180:0:2);
            draw ($(M2)+(0:2)$) -- ($(M3)+(0:2)$)
            ($(M2)+(180:2)$) -- ($(M3)+(180:2)$);
            end{scope}
            pgfmathtruncatemacro{Offset}{180+10*VernierLength*7.2-12.5*7.2}
            pgfmathtruncatemacro{Xmin}{10*VernierLength+1-12.5}
            pgfmathtruncatemacro{Xmax}{Xmin+23}
            foreach X [evaluate=X as Y using {int(mod(X,5))},
            evaluate=X as LX using {int(mod(X,50))}] in {Xmin,...,Xmax}
            {ifnumY=0
            draw[thin] let
            p1=($(0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})-
            (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})$),
            p2=($(0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})-
            (0.6,{(1+0.4)*cos(Offset-X*7.2+1)},{(1+0.4)*sin(Offset-X*7.2+1)})$),
            p3=($(0.6,{0},{(1+0.4)})-
            (0.6,{(1+0.4)*cos(91)},{(1+0.4)*sin(91)})$),
            n1={atan2(y1,x1)},n2={veclen(x2,y2)/veclen(x3,y3)} in
            (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})
            -- (0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})
            node[pos=1.5,rotate=n1,yscale={n2},transform shape]{LX};
            else
            draw[thin] (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})
            -- (0.3,{(1+0.2)*cos(Offset-X*7.2)},{(1+0.2)*sin(Offset-X*7.2)});
            fi}
            end{scope}
            end{tikzpicture}}
            end{document}


            enter image description here



            And here is a trick to draw the ticks. Call the point where the diagonal points intersect P. Then the ticks point to this point. Of course, in the end you want to remove the excess lines by clipping.



            documentclass[tikz,border=3.14mm]{standalone}
            usetikzlibrary{calc}
            begin{document}
            begin{tikzpicture}[font=sffamily]
            draw (0,0)--(-2,0) (0,-2)--(-2,-2);
            draw[thin] (0,0)--(0,-2);
            draw (0,0)coordinate (TL) --(1.5,1) coordinate (TR) --(3.5,1) ;
            draw (0,-2) coordinate (BL)--(1.5,-3) coordinate (BR) --(3.5,-3) ;
            draw[thin] (1.5,1)--(1.5,-3);
            draw (-2,-2) to[out=130,in=-130] (-2,-1) to[out=130,in=-130] (-2,0);
            draw[very thin] (-2,-1) to[out=50,in=-50] (-2,0);
            draw (3.5,1) to[out=-50,in=50] (3.5,-1) to[out=-50,in=50] (3.5,-3);
            draw[very thin] (3.5,-1) to[out=-130,in=130] (3.5,-3);
            path (intersection cs:first line={(TL)--(TR)}, second line={(BL)--(BR)})
            coordinate (P);
            clip (TL) -- (TR) -- (BR) -- (BL) -- cycle;
            foreach X [evaluate=X as Y using {int(mod(X,5))}] in {1,...,17}
            {ifnumY=0
            draw[shorten >=-20pt] (P) -- (0,-2+X/9) node[pos=1.65]{X};
            else
            draw[shorten >=-7pt] (P) -- (0,-2+X/9);
            fi }
            end{tikzpicture}
            end{document}


            enter image description here






            share|improve this answer















            This is an attempt of a 3d answer. I acknowledge and appreciate comments by KJO that made me realize that this is not really realistic and by Raaja that made me choose a perhaps more intuitive offset. ;-)



            documentclass[tikz,border=3.14mm]{standalone}
            usepackage{tikz-3dplot}
            usetikzlibrary{3d,calc}

            begin{document}

            tdplotsetmaincoords{00}{00}
            foreach Z in {1.5,3,...,30,28.5,27,...,3}
            {tdplotsetrotatedcoords{0}{Z}{00}
            pgfmathsetmacro{VernierLength}{Z/2} % <- this is the length in mm you want to show
            begin{tikzpicture}[tdplot_rotated_coords,font=sffamily]
            % begin{scope}[xshift=-5cm]
            % draw[-latex] (0,0,0) -- (1,0,0) node[pos=1.1]{$x$};
            % draw[-latex] (0,0,0) -- (0,1,0) node[pos=1.1]{$y$};
            % draw[-latex] (0,0,0) -- (0,0,1) node[pos=1.1]{$z$};
            % end{scope}
            path[tdplot_screen_coords,use as bounding box] (-3,-3) rectangle (5,3);
            path[tdplot_screen_coords] (5,3) node[anchor=north east]
            {$mathsf{L}=VernierLength$};
            begin{scope}
            begin{scope}[canvas is yz plane at x=0]
            path (0,0) coordinate (M1);
            draw (180:1) arc(180:0:1);
            end{scope}
            begin{scope}[canvas is yz plane at x=1.5]
            path (0,0) coordinate (M2);
            draw let p1=($(M2)-(M1)$),n1={0*atan2(y1,x1)+atan2(1,1.5)/2.5} in
            ($(M1)+(-n1/2:1)$) coordinate (TL) -- ($(M2)+(-n1/2:2)$) coordinate (TR)
            ($(M1)+(180+n1/2:1)$) coordinate (BL) -- ($(M2)+(180+n1/2:2)$) coordinate (BR)
            (BR) arc(180+n1/2:-n1/2:2);
            end{scope}
            begin{scope}
            draw plot[variable=t,domain=0:360,smooth]
            (-VernierLength/10-0.5,{cos(t)},{sin(t)});
            draw[clip] plot[variable=t,domain=0:180,smooth]
            (-VernierLength/10-0.5,{cos(t)},{sin(t)})
            -- plot[variable=t,domain=180:0,smooth]
            (0,{cos(t)},{sin(t)}) -- cycle;
            draw[thick] (-VernierLength/10,0,1) -- (0,0,1)
            plot[variable=t,domain=60:110,smooth]
            (-VernierLength/10,{cos(t)},{sin(t)});
            path let
            p1=($(-VernierLength/10,{cos(120)},{sin(120)})-(-VernierLength/10,{cos(110)},{sin(110)})$),
            n1={90+atan2(y1,x1)} in (-VernierLength/10,{cos(120)},{sin(120)})
            node[rotate=n1,yscale={cos(30)},transform shape]{0};
            pgfmathtruncatemacro{Xmax}{VernierLength/2}
            ifnumXmax>0
            foreach X in {1,...,Xmax}
            {ifoddX
            draw plot[variable=t,domain=90:110,smooth]
            (-VernierLength/10+X/5,{cos(t)},{sin(t)});
            % path let
            % p1=($(-VernierLength/10+X/5,{cos(120)},{sin(120)})-(-VernierLength/10+X/5,{cos(110)},{sin(110)})$),
            % n1={90+atan2(y1,x1)} in (-VernierLength/10+X/5,{cos(120)},{sin(120)})
            % node[rotate=n1,yscale={cos(30)},transform shape]{X};
            else
            draw plot[variable=t,domain=90:70,smooth]
            (-VernierLength/10+X/5,{cos(t)},{sin(t)});
            % path let
            % p1=($(-VernierLength/10+X/5,{cos(60)},{sin(60)})-(-VernierLength/10+X/5,{cos(70)},{sin(70)})$),
            % n1={-90+atan2(y1,x1)} in (-VernierLength/10+X/5,{cos(60)},{sin(60)})
            % node[rotate=n1,yscale={cos(30)},transform shape]{X};
            fi
            }
            fi
            end{scope}
            %
            begin{scope}[canvas is yz plane at x=3.5]
            path (0,0) coordinate (M3);
            draw (180:2) arc(180:0:2);
            draw ($(M2)+(0:2)$) -- ($(M3)+(0:2)$)
            ($(M2)+(180:2)$) -- ($(M3)+(180:2)$);
            end{scope}
            pgfmathtruncatemacro{Offset}{180+10*VernierLength*7.2-12.5*7.2}
            pgfmathtruncatemacro{Xmin}{10*VernierLength+1-12.5}
            pgfmathtruncatemacro{Xmax}{Xmin+23}
            foreach X [evaluate=X as Y using {int(mod(X,5))},
            evaluate=X as LX using {int(mod(X,50))}] in {Xmin,...,Xmax}
            {ifnumY=0
            draw[thin] let
            p1=($(0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})-
            (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})$),
            p2=($(0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})-
            (0.6,{(1+0.4)*cos(Offset-X*7.2+1)},{(1+0.4)*sin(Offset-X*7.2+1)})$),
            p3=($(0.6,{0},{(1+0.4)})-
            (0.6,{(1+0.4)*cos(91)},{(1+0.4)*sin(91)})$),
            n1={atan2(y1,x1)},n2={veclen(x2,y2)/veclen(x3,y3)} in
            (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})
            -- (0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})
            node[pos=1.5,rotate=n1,yscale={n2},transform shape]{LX};
            else
            draw[thin] (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})
            -- (0.3,{(1+0.2)*cos(Offset-X*7.2)},{(1+0.2)*sin(Offset-X*7.2)});
            fi}
            end{scope}
            end{tikzpicture}}
            end{document}


            enter image description here



            And here is a trick to draw the ticks. Call the point where the diagonal points intersect P. Then the ticks point to this point. Of course, in the end you want to remove the excess lines by clipping.



            documentclass[tikz,border=3.14mm]{standalone}
            usetikzlibrary{calc}
            begin{document}
            begin{tikzpicture}[font=sffamily]
            draw (0,0)--(-2,0) (0,-2)--(-2,-2);
            draw[thin] (0,0)--(0,-2);
            draw (0,0)coordinate (TL) --(1.5,1) coordinate (TR) --(3.5,1) ;
            draw (0,-2) coordinate (BL)--(1.5,-3) coordinate (BR) --(3.5,-3) ;
            draw[thin] (1.5,1)--(1.5,-3);
            draw (-2,-2) to[out=130,in=-130] (-2,-1) to[out=130,in=-130] (-2,0);
            draw[very thin] (-2,-1) to[out=50,in=-50] (-2,0);
            draw (3.5,1) to[out=-50,in=50] (3.5,-1) to[out=-50,in=50] (3.5,-3);
            draw[very thin] (3.5,-1) to[out=-130,in=130] (3.5,-3);
            path (intersection cs:first line={(TL)--(TR)}, second line={(BL)--(BR)})
            coordinate (P);
            clip (TL) -- (TR) -- (BR) -- (BL) -- cycle;
            foreach X [evaluate=X as Y using {int(mod(X,5))}] in {1,...,17}
            {ifnumY=0
            draw[shorten >=-20pt] (P) -- (0,-2+X/9) node[pos=1.65]{X};
            else
            draw[shorten >=-7pt] (P) -- (0,-2+X/9);
            fi }
            end{tikzpicture}
            end{document}


            enter image description here







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited 4 hours ago

























            answered yesterday









            marmotmarmot

            96.6k4111213




            96.6k4111213








            • 1





              @KJO Good thinking! (My above comment was also an attempt of being polite and saying I am not sure that any of the drawings so far, including mine, are accurate. I believe one should draw the thingy in 3d and then project on the screen. That way the outer lines should be closer and the inner ones further apart.)

              – marmot
              yesterday






            • 1





              @marmot I didnt thought about clipping part :/ I was looking to make it grow along y-axis and failed miserably (sob!).

              – Raaja
              yesterday






            • 1





              Its a truncated cone for reality check commons.wikimedia.org/wiki/File:578metric-micrometer.jpg#/media/…

              – KJO
              yesterday






            • 4





              @marmot Naaice!

              – Raaja
              yesterday






            • 1





              @KJO I think Ulrike Fischer will be in charge of the weather ;-)

              – marmot
              yesterday














            • 1





              @KJO Good thinking! (My above comment was also an attempt of being polite and saying I am not sure that any of the drawings so far, including mine, are accurate. I believe one should draw the thingy in 3d and then project on the screen. That way the outer lines should be closer and the inner ones further apart.)

              – marmot
              yesterday






            • 1





              @marmot I didnt thought about clipping part :/ I was looking to make it grow along y-axis and failed miserably (sob!).

              – Raaja
              yesterday






            • 1





              Its a truncated cone for reality check commons.wikimedia.org/wiki/File:578metric-micrometer.jpg#/media/…

              – KJO
              yesterday






            • 4





              @marmot Naaice!

              – Raaja
              yesterday






            • 1





              @KJO I think Ulrike Fischer will be in charge of the weather ;-)

              – marmot
              yesterday








            1




            1





            @KJO Good thinking! (My above comment was also an attempt of being polite and saying I am not sure that any of the drawings so far, including mine, are accurate. I believe one should draw the thingy in 3d and then project on the screen. That way the outer lines should be closer and the inner ones further apart.)

            – marmot
            yesterday





            @KJO Good thinking! (My above comment was also an attempt of being polite and saying I am not sure that any of the drawings so far, including mine, are accurate. I believe one should draw the thingy in 3d and then project on the screen. That way the outer lines should be closer and the inner ones further apart.)

            – marmot
            yesterday




            1




            1





            @marmot I didnt thought about clipping part :/ I was looking to make it grow along y-axis and failed miserably (sob!).

            – Raaja
            yesterday





            @marmot I didnt thought about clipping part :/ I was looking to make it grow along y-axis and failed miserably (sob!).

            – Raaja
            yesterday




            1




            1





            Its a truncated cone for reality check commons.wikimedia.org/wiki/File:578metric-micrometer.jpg#/media/…

            – KJO
            yesterday





            Its a truncated cone for reality check commons.wikimedia.org/wiki/File:578metric-micrometer.jpg#/media/…

            – KJO
            yesterday




            4




            4





            @marmot Naaice!

            – Raaja
            yesterday





            @marmot Naaice!

            – Raaja
            yesterday




            1




            1





            @KJO I think Ulrike Fischer will be in charge of the weather ;-)

            – marmot
            yesterday





            @KJO I think Ulrike Fischer will be in charge of the weather ;-)

            – marmot
            yesterday











            16














            A PSTricks solution just for fun purposes. I focus on the scale. The aesthetic aspects are too trivial.



            documentclass[pstricks,border=12pt,12pt]{standalone}
            usepackage{multido}
            usepackage[nomessages]{fp}

            makeatletter
            defvernier#1{%
            begingroup
            psset{yunit=2mm,xunit=1mm,linecolor=red,linewidth=.8pt,linecap=0}
            pspolygon[fillcolor=yellow,fillstyle=solid,opacity=.9,linestyle=none,linewidth=.8pt,linearc=1pt](0,-6)(0,6)(6,7.5)(10,7.5)(10,-7.5)(6,-7.5)
            multido{iy=-5+1,in={numexpr#1-5relax}+1}{11}{%
            pst@modin{50}lbl
            pst@modlbl{5}tmp
            psline(0,iy)(!tmpspace 0 ne {2} {5} ifelse iyspace)
            ifnumtmp=0uput[0](3.5,iy){textcolor{red}{$lbl$}}fi
            }
            psline(.5pslinewidth,-5)(.5pslinewidth,5)
            endgroup
            }

            newcommandmicrometer[1]{%
            bgroup
            psset{xunit=.2mm,yunit=1cm,linewidth=1.6pt}
            begin{pspicture}[linecolor=black,linecap=2](0,-1.3)(150,1.7)
            FPevalargs{trunc(#1*100:0)}
            pst@mod{args}{100}position
            FPevallbl{trunc(args/100:0)}
            multido{ix=0+50}{4}{%
            pst@modix{100}rem
            ifnumrem=0
            psline(ix,-17pt)(ix,17pt)
            uput[90](ix,16pt){lbl}
            FPevallbl{trunc(lbl+1:0)}
            else
            pst@modix{50}rem
            ifnumrem=0
            psline(ix,-5pt)(ix,5pt)
            fi
            fi}
            psline(150,0)
            rput(dimexprpositionpsxunit-.4ptrelax,0){vernier{args}}
            rput(75,1.75){scriptsize#1}
            end{pspicture}
            egroup
            }
            makeatother

            begin{document}
            multido{n=3.00+0.01}{100}{micrometer{n}}
            %micrometer{2.34}
            end{document}


            enter image description here






            share|improve this answer



















            • 3





              +1. However, I think the OP only asks how to draw the figures :)

              – JouleV
              yesterday






            • 3





              @JouleV: I was not trying to answer the OP question. :-)

              – Artificial Stupidity
              yesterday






            • 5





              ... as usual ;-).

              – AlexG
              yesterday
















            16














            A PSTricks solution just for fun purposes. I focus on the scale. The aesthetic aspects are too trivial.



            documentclass[pstricks,border=12pt,12pt]{standalone}
            usepackage{multido}
            usepackage[nomessages]{fp}

            makeatletter
            defvernier#1{%
            begingroup
            psset{yunit=2mm,xunit=1mm,linecolor=red,linewidth=.8pt,linecap=0}
            pspolygon[fillcolor=yellow,fillstyle=solid,opacity=.9,linestyle=none,linewidth=.8pt,linearc=1pt](0,-6)(0,6)(6,7.5)(10,7.5)(10,-7.5)(6,-7.5)
            multido{iy=-5+1,in={numexpr#1-5relax}+1}{11}{%
            pst@modin{50}lbl
            pst@modlbl{5}tmp
            psline(0,iy)(!tmpspace 0 ne {2} {5} ifelse iyspace)
            ifnumtmp=0uput[0](3.5,iy){textcolor{red}{$lbl$}}fi
            }
            psline(.5pslinewidth,-5)(.5pslinewidth,5)
            endgroup
            }

            newcommandmicrometer[1]{%
            bgroup
            psset{xunit=.2mm,yunit=1cm,linewidth=1.6pt}
            begin{pspicture}[linecolor=black,linecap=2](0,-1.3)(150,1.7)
            FPevalargs{trunc(#1*100:0)}
            pst@mod{args}{100}position
            FPevallbl{trunc(args/100:0)}
            multido{ix=0+50}{4}{%
            pst@modix{100}rem
            ifnumrem=0
            psline(ix,-17pt)(ix,17pt)
            uput[90](ix,16pt){lbl}
            FPevallbl{trunc(lbl+1:0)}
            else
            pst@modix{50}rem
            ifnumrem=0
            psline(ix,-5pt)(ix,5pt)
            fi
            fi}
            psline(150,0)
            rput(dimexprpositionpsxunit-.4ptrelax,0){vernier{args}}
            rput(75,1.75){scriptsize#1}
            end{pspicture}
            egroup
            }
            makeatother

            begin{document}
            multido{n=3.00+0.01}{100}{micrometer{n}}
            %micrometer{2.34}
            end{document}


            enter image description here






            share|improve this answer



















            • 3





              +1. However, I think the OP only asks how to draw the figures :)

              – JouleV
              yesterday






            • 3





              @JouleV: I was not trying to answer the OP question. :-)

              – Artificial Stupidity
              yesterday






            • 5





              ... as usual ;-).

              – AlexG
              yesterday














            16












            16








            16







            A PSTricks solution just for fun purposes. I focus on the scale. The aesthetic aspects are too trivial.



            documentclass[pstricks,border=12pt,12pt]{standalone}
            usepackage{multido}
            usepackage[nomessages]{fp}

            makeatletter
            defvernier#1{%
            begingroup
            psset{yunit=2mm,xunit=1mm,linecolor=red,linewidth=.8pt,linecap=0}
            pspolygon[fillcolor=yellow,fillstyle=solid,opacity=.9,linestyle=none,linewidth=.8pt,linearc=1pt](0,-6)(0,6)(6,7.5)(10,7.5)(10,-7.5)(6,-7.5)
            multido{iy=-5+1,in={numexpr#1-5relax}+1}{11}{%
            pst@modin{50}lbl
            pst@modlbl{5}tmp
            psline(0,iy)(!tmpspace 0 ne {2} {5} ifelse iyspace)
            ifnumtmp=0uput[0](3.5,iy){textcolor{red}{$lbl$}}fi
            }
            psline(.5pslinewidth,-5)(.5pslinewidth,5)
            endgroup
            }

            newcommandmicrometer[1]{%
            bgroup
            psset{xunit=.2mm,yunit=1cm,linewidth=1.6pt}
            begin{pspicture}[linecolor=black,linecap=2](0,-1.3)(150,1.7)
            FPevalargs{trunc(#1*100:0)}
            pst@mod{args}{100}position
            FPevallbl{trunc(args/100:0)}
            multido{ix=0+50}{4}{%
            pst@modix{100}rem
            ifnumrem=0
            psline(ix,-17pt)(ix,17pt)
            uput[90](ix,16pt){lbl}
            FPevallbl{trunc(lbl+1:0)}
            else
            pst@modix{50}rem
            ifnumrem=0
            psline(ix,-5pt)(ix,5pt)
            fi
            fi}
            psline(150,0)
            rput(dimexprpositionpsxunit-.4ptrelax,0){vernier{args}}
            rput(75,1.75){scriptsize#1}
            end{pspicture}
            egroup
            }
            makeatother

            begin{document}
            multido{n=3.00+0.01}{100}{micrometer{n}}
            %micrometer{2.34}
            end{document}


            enter image description here






            share|improve this answer













            A PSTricks solution just for fun purposes. I focus on the scale. The aesthetic aspects are too trivial.



            documentclass[pstricks,border=12pt,12pt]{standalone}
            usepackage{multido}
            usepackage[nomessages]{fp}

            makeatletter
            defvernier#1{%
            begingroup
            psset{yunit=2mm,xunit=1mm,linecolor=red,linewidth=.8pt,linecap=0}
            pspolygon[fillcolor=yellow,fillstyle=solid,opacity=.9,linestyle=none,linewidth=.8pt,linearc=1pt](0,-6)(0,6)(6,7.5)(10,7.5)(10,-7.5)(6,-7.5)
            multido{iy=-5+1,in={numexpr#1-5relax}+1}{11}{%
            pst@modin{50}lbl
            pst@modlbl{5}tmp
            psline(0,iy)(!tmpspace 0 ne {2} {5} ifelse iyspace)
            ifnumtmp=0uput[0](3.5,iy){textcolor{red}{$lbl$}}fi
            }
            psline(.5pslinewidth,-5)(.5pslinewidth,5)
            endgroup
            }

            newcommandmicrometer[1]{%
            bgroup
            psset{xunit=.2mm,yunit=1cm,linewidth=1.6pt}
            begin{pspicture}[linecolor=black,linecap=2](0,-1.3)(150,1.7)
            FPevalargs{trunc(#1*100:0)}
            pst@mod{args}{100}position
            FPevallbl{trunc(args/100:0)}
            multido{ix=0+50}{4}{%
            pst@modix{100}rem
            ifnumrem=0
            psline(ix,-17pt)(ix,17pt)
            uput[90](ix,16pt){lbl}
            FPevallbl{trunc(lbl+1:0)}
            else
            pst@modix{50}rem
            ifnumrem=0
            psline(ix,-5pt)(ix,5pt)
            fi
            fi}
            psline(150,0)
            rput(dimexprpositionpsxunit-.4ptrelax,0){vernier{args}}
            rput(75,1.75){scriptsize#1}
            end{pspicture}
            egroup
            }
            makeatother

            begin{document}
            multido{n=3.00+0.01}{100}{micrometer{n}}
            %micrometer{2.34}
            end{document}


            enter image description here







            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered yesterday









            Artificial StupidityArtificial Stupidity

            5,49011040




            5,49011040








            • 3





              +1. However, I think the OP only asks how to draw the figures :)

              – JouleV
              yesterday






            • 3





              @JouleV: I was not trying to answer the OP question. :-)

              – Artificial Stupidity
              yesterday






            • 5





              ... as usual ;-).

              – AlexG
              yesterday














            • 3





              +1. However, I think the OP only asks how to draw the figures :)

              – JouleV
              yesterday






            • 3





              @JouleV: I was not trying to answer the OP question. :-)

              – Artificial Stupidity
              yesterday






            • 5





              ... as usual ;-).

              – AlexG
              yesterday








            3




            3





            +1. However, I think the OP only asks how to draw the figures :)

            – JouleV
            yesterday





            +1. However, I think the OP only asks how to draw the figures :)

            – JouleV
            yesterday




            3




            3





            @JouleV: I was not trying to answer the OP question. :-)

            – Artificial Stupidity
            yesterday





            @JouleV: I was not trying to answer the OP question. :-)

            – Artificial Stupidity
            yesterday




            5




            5





            ... as usual ;-).

            – AlexG
            yesterday





            ... as usual ;-).

            – AlexG
            yesterday










            Someone is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            Someone is a new contributor. Be nice, and check out our Code of Conduct.













            Someone is a new contributor. Be nice, and check out our Code of Conduct.












            Someone is a new contributor. Be nice, and check out our Code of Conduct.
















            Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f472876%2fhow-to-draw-micrometer-scale-using-tikz%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            數位音樂下載

            格利澤436b

            When can things happen in Etherscan, such as the picture below?