极性
Multi tool use
提示 :本条目的主题不是
电极 。
在化學中,極性 (polarity),是指一根共價鍵或一個共價分子中電荷分佈的不均勻性。如果電荷分佈得不均勻,則稱該鍵或分子為極性;如果均勻,則稱為非極性 。
物質的一些物理性質(如溶解性、熔沸點等)與分子的極性相關。
目录
1 共價鍵的極性
2 共價鍵的極性
3 分子的極性
4 分子極性對性質的影響
5 外部連結
共價鍵的極性
水是極性化合物。由於氧原子強烈的電負度,電子對明顯偏向氧一側,因此氧周圍聚集負電荷(紅色部分),氫原子周圍聚集正電荷(藍色部分)。
共價鍵的極性是因為成鍵的兩個原子電負度不相同而產生的。電負度高的原子,如氟、氧及氮,比電負度低的原子更能吸引電子,即把電子「拉」向它那一方,而電子接近電負度高的原子的時間也較多,使得電荷不均勻分佈。這樣形成了一組偶極,這樣的鍵就是極性鍵。電負度高的原子是負偶極,記作δ-;電負度低的原子是正偶極,記作δ+。
鍵可以墮入兩個極端——極性和非極性。當構成共價鍵的不同離子的電負度完全相同,便會產生完全非極性的鍵。相反,當兩者的電負度相差值大得足以令其中一種離子完全取走了另一方的一粒電子,就會產生極性鍵——或更貼切而言,是離子鍵。「極性」和「非極性」二詞多用於形容共價鍵上。
鍵的極性程度可以用兩個原子電負度之差來衡量。差值在0.4到1.7之間的是典型的極性共價鍵,差值在0.0到0.4之間的是非極性共價鍵,兩個原子完全相同(當然電負度也完全相同)時,差值為0,這時原子間成非極性鍵。
共價鍵的極性
水是極性化合物。由於氧原子強烈的電負度,電子對明顯偏向氧一側,因此氧周圍聚集負電荷(紅色部分),氫原子周圍聚集正電荷(藍色部分)。
共價鍵的極性是因為成鍵的兩個原子電負度不相同而產生的。電負度高的原子,如氟、氧及氮,比電負度低的原子更能吸引電子,即把電子「拉」向它那一方,而電子接近電負度高的原子的時間也較多,使得電荷不均勻分佈。這樣形成了一組偶極,這樣的鍵就是極性鍵。電負度高的原子是負偶極,記作δ-;電負度低的原子是正偶極,記作δ+。
鍵可以墮入兩個極端——極性和非極性。當構成共價鍵的不同離子的電負度完全相同,便會產生完全非極性的鍵。相反,當兩者的電負度相差值大得足以令其中一種離子完全取走了另一方的一粒電子,就會產生極性鍵——或更貼切而言,是離子鍵。「極性」和「非極性」二詞多用於形容共價鍵上。
鍵的極性程度可以用兩個原子電負度之差來衡量。差值在0.4到1.7之間的是典型的極性共價鍵,差值在0.0到0.4之間的是非極性共價鍵,兩個原子完全相同(當然電負度也完全相同)時,差值為0,這時原子間成非極性鍵。
分子的極性
三角形的三氟化硼分子。儘管3根鍵都是極性鍵,但分子是非極性分子。因為分子對稱,正負電荷中心重合了。
一個共價分子是極性的,是説這個分子內電荷分佈不均勻,或者説,正負電荷中心沒有重合。分子的極性取決於分子內各個鍵的極性以及它們的排列方式。在大多數情況下,極性分子中含有極性鍵,非極性分子中含有非極性鍵。
然而,非極性分子也可以全部由極性鍵構成。只要分子高度對稱,各個極性鍵的正、負電荷中心就都集中在了分子的幾何中心上,這樣便消去了分子的極性。這樣的分子一般是直線形、三角形(又因三个原子处于同一平面而称作平面型)或正四面體形。
分子形状
参见价层电子对互斥理论。
分子的形状是在组成分子的各原子以及其中某原子的未成键电子的相互排斥作用下形成的。未成键电子对化学键的排斥力大于化学键之间的相互排斥力。如二氧化碳(CO2 ),其中的碳原子和氧原子均达到了八电子稳定结构且所有电子均成键,所以没有额外电子,又因双键的原因碳原子和氧原子都在一条直线上,所以二氧化碳是直线型分子。而氨气(NH3 ),因为氮原子有一对电子未成键,所以对三对氮氢化学键有较大排斥力,因此氨气分子是三角锥形,而不是平面型或正四面体型。
分子極性的推測
通式
描述
舉例
極性
AB
線形
CO
HAx
只含1個氫的分子
HCl
Ax (OH)y
分子一端有羥基
C2 H5 OH
Ox Ay
分子一端有氧原子
H2 O
Nx Ay
分子一端有氮原子
NH3
非極性
Ax
絕大多數單質
O2
Cx Ay
多數含碳化合物
CO2
分子極性對性質的影響
溶解性
分子的極性對物質溶解性有很大影響。極性分子易溶於極性溶劑,非極性分子易溶於非極性溶劑,也即「同類互溶」。 蔗糖、氨等極性分子和氯化鈉等离子化合物易溶於水。具有長碳鏈的有機物,如油脂、石油的成分多不溶於水,而溶於非極性的有機溶劑。
熔沸點
在分子量相同的情況下,極性分子比非極性分子有更高的沸點。這是因為極性分子之間的取向力比非極性分子之間的色散力大。
外部連結
化學主题
Chemical Bonding
Polarity of Bonds and Molecules
Molecule Polarity
溶液相关条目
溶液
理想溶液 · 水溶液 · 固溶体 · 缓冲溶液 · 弗洛里-哈金斯 · 混合物 · 悬浮液 · 膠體 · 相图 · 低共熔点 · 合金 · 饱和 · 过饱和 · 连续稀释 · 規則溶液
浓度 与相关量
體積莫耳濃度 · 重量莫耳濃度 · 体积分数 · 质量分数 · 质量浓度 · 百万分率 · 十亿分率 · 當量濃度 · 摩尔分数 · 质量百分浓度 · 丰度 · 混合比例 · 活度
溶解度
溶解平衡 · 总溶解固体 · 溶解 · 溶劑殼 · 溶解熱 · 晶格能 · 拉乌尔定律 · 亨利定律 · 溶解度表 · 溶解度图
溶剂
(分类) · 酸度系数 · 质子溶剂 · 无机非水溶剂 · 溶剂化 · 溶剂列表 分配系数 · 极性 · 疏水性 · 親水性 · 親脂性 · 两亲分子
0mdRKt3,I7,isxDDGzAX4,Xsi2H
Popular posts from this blog
數位音樂下載 為非以「實體」方式來販賣音樂的相關產品,而使用數位格式如mp3、AAC等文件格式來進行銷售販賣的一种音乐产业形式。著名的數位音樂下載服務商有iTunes Store、RecoChoku、Google Play音乐和微软Zune等。数字音乐下载在二十一世纪初一度风靡全球, [1] [2] 使得传统唱片产业走向衰落,但其自身也在2010年代流媒体音乐服务如Apple Music、Spotify等的挤压下迅速失去市场份额。 [3] [4] 数字音乐下载有便于携带、传播迅速、制作简单成本低等优点,与流媒体音乐相比也能更好保障音乐人权益; [5] 但它同时很可能带来侵犯版权和滥用的情形, [6] 也给音乐产业带来了诸多不利影响。数字音乐下载为音乐人和乐迷提供了更加便捷直接的交流渠道,也一定程度上推动了网络音乐人的出现和独立音乐的迅速发展。 [7] 目录 1 历史 1.1 技术积淀(1987-2000) 1.2 出现与兴起(2000-2004) 1.3 唱片市场的颠覆者(2004-2007) 1.4 巅峰和衰落(2005-2013) 1.5 摇摇欲坠的现状与不可预知的明天(2014至今) 2 主要文件格式 2.1 PCM编码格式 2.1.1 WAV 2.1.2 APE 2.1.3 FLAC 2.2 苹果推出的无损文件格式 2.2.1 AIFF 2.2.2 ALAC 2.3 有损压缩格式 2.3.1 MP3 2.3.2 AAC 3 主要市场 3.1 iTunes Store 3.2 Google Play音乐商店 3.3 亚马逊音乐商店 3.4 部分其他音乐商店 4 影响与评价 4.1 对音乐产业的影响 4.2 对科技行业的影响 4.3 正面评价 4.4 负面评价 4.4.1 侵权问题 4.4.2 经营模式不明晰 4.4.3 不适应移动时代 4.5 文化现象 5 延伸阅读 6 参考资料 历史 苹果iTunes+iPod的软硬件搭配让数字音...
2
I don't know why balance of the address is 0. when can this situation?
etherscan balances
share | improve this question
asked yesterday
Ru Hi Ru Hi
11 1
New contributor
Ru Hi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
add a comment |
...
格利泽436b 太陽系外行星 太陽系外行星列表 艺术家笔下的格利泽436b 母恆星 母恆星 Gliese 436 星座 獅子座 赤經 ( α ) 11 h 42 m 11.0941 s [1] 赤緯 ( δ ) +26° 42′ 23.652″ [1] 距離 33.4 ly (10.2 pc) 光譜類型 M2.5 V [1] 軌道參數 半长轴 ( a ) 0.0291±0.0004 [2] AU 軌道離心率 ( e ) 0.150±0.012 [2] 公轉週期 ( P ) 2.643904±0.000005 [3] d (0.00723849 y) 軌道傾角 ( i ) 85.8 +0.21 −0.25 [3] ° 角距 ( θ ) 2.794 mas 近星點時間 ( T 0 ) 2,451,551.716 ±0.01 JD 半振幅 ( K ) 18.68±0.8 m/s 物理性质 质量 ( m ) 22.2±1.0 [2] M ⊕ 半徑 ( r ) 4.327±0.183 [2] [4] R ⊕ 密度 ( ρ ) 1.51 g cm -3 表面重力 ( g ) 1.18 g 溫度 ( T ) 712±36 [2] K 發現 發現時間 2004 發現者 巴特勒、沃格特、 馬西 et al. 發現方法 徑向速度、凌日法 發現地點 美國加利福尼亞州 發表論文 出版 其他名稱 Ross 905 b, GJ 436 b, [5] LTT 13213 b, GCTP 2704.10 b, LHS 310, AC+27:28217 b, Vyssotsky 616 b, HIP 57087 b, GEN# +9.80120068 b, LP 319-75 b, G 121-7 b, LSPM J1142+2642 b, 1RXS J114211.9+264328 b, ASCC 683818 b, G 147-68 b, UCAC2 41198281 b, BP...