Approximating $frac {log(5/4)}{log(3/2)}$ to a rational number
$begingroup$
I'm making a phone game, and I need to approximate $frac {log(5/4)}{log(3/2)}$ to a rational number $p/q$.
I wish $p$ and $q$ small enough. For example, I don't want $p$, $qapprox 10^7$; it's way too much for my code.
In the game, there's two way to upgrade ability. Type A gives an additional $50%$ increase at once. and type B gives $25%$.
What I want to know is how many times of upgrade $(x,y)$ provides the same additional increase. So what I've done is solve $(3/2)^x = (5/4)^y$ respect to $frac xy$.
Can you provide me a way to construct sequence $p_n$, $q_n$ which approximate the real number?
Thank you in advance.
approximation irrational-numbers
$endgroup$
add a comment |
$begingroup$
I'm making a phone game, and I need to approximate $frac {log(5/4)}{log(3/2)}$ to a rational number $p/q$.
I wish $p$ and $q$ small enough. For example, I don't want $p$, $qapprox 10^7$; it's way too much for my code.
In the game, there's two way to upgrade ability. Type A gives an additional $50%$ increase at once. and type B gives $25%$.
What I want to know is how many times of upgrade $(x,y)$ provides the same additional increase. So what I've done is solve $(3/2)^x = (5/4)^y$ respect to $frac xy$.
Can you provide me a way to construct sequence $p_n$, $q_n$ which approximate the real number?
Thank you in advance.
approximation irrational-numbers
$endgroup$
$begingroup$
I don't understand your game, but your number approximately $0.55034$ and thus $tfrac{55034}{100000}$ or $tfrac{5503}{10000}$. What's wrong with that?
$endgroup$
– amsmath
yesterday
6
$begingroup$
The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
$endgroup$
– hardmath
yesterday
1
$begingroup$
You can take truncations of the continued fraction of that number. The first few of its values start like this.
$endgroup$
– user647486
yesterday
$begingroup$
try 82/149 ........
$endgroup$
– Will Jagy
yesterday
2
$begingroup$
Cool, a practical application of continued fractions. :)
$endgroup$
– Minus One-Twelfth
yesterday
add a comment |
$begingroup$
I'm making a phone game, and I need to approximate $frac {log(5/4)}{log(3/2)}$ to a rational number $p/q$.
I wish $p$ and $q$ small enough. For example, I don't want $p$, $qapprox 10^7$; it's way too much for my code.
In the game, there's two way to upgrade ability. Type A gives an additional $50%$ increase at once. and type B gives $25%$.
What I want to know is how many times of upgrade $(x,y)$ provides the same additional increase. So what I've done is solve $(3/2)^x = (5/4)^y$ respect to $frac xy$.
Can you provide me a way to construct sequence $p_n$, $q_n$ which approximate the real number?
Thank you in advance.
approximation irrational-numbers
$endgroup$
I'm making a phone game, and I need to approximate $frac {log(5/4)}{log(3/2)}$ to a rational number $p/q$.
I wish $p$ and $q$ small enough. For example, I don't want $p$, $qapprox 10^7$; it's way too much for my code.
In the game, there's two way to upgrade ability. Type A gives an additional $50%$ increase at once. and type B gives $25%$.
What I want to know is how many times of upgrade $(x,y)$ provides the same additional increase. So what I've done is solve $(3/2)^x = (5/4)^y$ respect to $frac xy$.
Can you provide me a way to construct sequence $p_n$, $q_n$ which approximate the real number?
Thank you in advance.
approximation irrational-numbers
approximation irrational-numbers
edited yesterday
YuiTo Cheng
2,1362837
2,1362837
asked yesterday
MrTanorusMrTanorus
31918
31918
$begingroup$
I don't understand your game, but your number approximately $0.55034$ and thus $tfrac{55034}{100000}$ or $tfrac{5503}{10000}$. What's wrong with that?
$endgroup$
– amsmath
yesterday
6
$begingroup$
The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
$endgroup$
– hardmath
yesterday
1
$begingroup$
You can take truncations of the continued fraction of that number. The first few of its values start like this.
$endgroup$
– user647486
yesterday
$begingroup$
try 82/149 ........
$endgroup$
– Will Jagy
yesterday
2
$begingroup$
Cool, a practical application of continued fractions. :)
$endgroup$
– Minus One-Twelfth
yesterday
add a comment |
$begingroup$
I don't understand your game, but your number approximately $0.55034$ and thus $tfrac{55034}{100000}$ or $tfrac{5503}{10000}$. What's wrong with that?
$endgroup$
– amsmath
yesterday
6
$begingroup$
The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
$endgroup$
– hardmath
yesterday
1
$begingroup$
You can take truncations of the continued fraction of that number. The first few of its values start like this.
$endgroup$
– user647486
yesterday
$begingroup$
try 82/149 ........
$endgroup$
– Will Jagy
yesterday
2
$begingroup$
Cool, a practical application of continued fractions. :)
$endgroup$
– Minus One-Twelfth
yesterday
$begingroup$
I don't understand your game, but your number approximately $0.55034$ and thus $tfrac{55034}{100000}$ or $tfrac{5503}{10000}$. What's wrong with that?
$endgroup$
– amsmath
yesterday
$begingroup$
I don't understand your game, but your number approximately $0.55034$ and thus $tfrac{55034}{100000}$ or $tfrac{5503}{10000}$. What's wrong with that?
$endgroup$
– amsmath
yesterday
6
6
$begingroup$
The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
$endgroup$
– hardmath
yesterday
$begingroup$
The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
$endgroup$
– hardmath
yesterday
1
1
$begingroup$
You can take truncations of the continued fraction of that number. The first few of its values start like this.
$endgroup$
– user647486
yesterday
$begingroup$
You can take truncations of the continued fraction of that number. The first few of its values start like this.
$endgroup$
– user647486
yesterday
$begingroup$
try 82/149 ........
$endgroup$
– Will Jagy
yesterday
$begingroup$
try 82/149 ........
$endgroup$
– Will Jagy
yesterday
2
2
$begingroup$
Cool, a practical application of continued fractions. :)
$endgroup$
– Minus One-Twelfth
yesterday
$begingroup$
Cool, a practical application of continued fractions. :)
$endgroup$
– Minus One-Twelfth
yesterday
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Running the extended Euclidean algorithm to find the continued fraction:
$$begin{array}{cc|cc}x&q&a&b\
hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^{-6} & 143 & 891 & -1619 \
1.25cdot 10^{-6} & 3 & -127495 & 231666end{array}$$
The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot frac{log(5/4)}{log(3/2)}approx 0.00679426$. The fraction $left|frac{log(5/4)}{log(3/2)}right|$ is approximated by $frac{|a_n|}{|b_n|}$, with increasing accuracy.
The formulas for building this table: $q_n = leftlfloor frac {x_{n-1}}{x_n}rightrfloor$, $x_{n+1}=x_{n-1}-q_nx_n$, $a_{n+1}=a_{n-1}-q_na_n$, $b_{n+1}=b_{n-1}-q_nb_n$. Initialize with $x_0=1$, $x_{-1}$ the quantity we're trying to estimate, $a_{-1}=b_0=0$, $a_0=b_{-1}=1$.
If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.
Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac{891}{1619}$ approximation.
It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac{11}{20}$ approximation.
$endgroup$
add a comment |
$begingroup$
The continued fraction for $frac{logleft(frac54right)}{logleft(frac32right)}$ is
$$
{0;1,1,4,2,6,1,color{#C00}{10},143,3,dots}
$$
The convergents for this continued fraction are
$$
left{0,1,frac12,frac59,frac{11}{20},frac{71}{129},frac{82}{149},color{#C00}{frac{891}{1619}},frac{127495}{231666},frac{383376}{696617},dotsright}
$$
As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac{891}{1619}$ is closer than $frac1{143cdot1619^2}$ to $frac{logleft(frac54right)}{logleft(frac32right)}$.
$endgroup$
$begingroup$
Thank you. A good addition to my answer.
$endgroup$
– Ross Millikan
yesterday
add a comment |
$begingroup$
The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac {891}{1619}approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.
$endgroup$
1
$begingroup$
(+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction approximation and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1{cq^2}$ to the value approximated.
$endgroup$
– robjohn♦
yesterday
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160023%2fapproximating-frac-log5-4-log3-2-to-a-rational-number%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Running the extended Euclidean algorithm to find the continued fraction:
$$begin{array}{cc|cc}x&q&a&b\
hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^{-6} & 143 & 891 & -1619 \
1.25cdot 10^{-6} & 3 & -127495 & 231666end{array}$$
The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot frac{log(5/4)}{log(3/2)}approx 0.00679426$. The fraction $left|frac{log(5/4)}{log(3/2)}right|$ is approximated by $frac{|a_n|}{|b_n|}$, with increasing accuracy.
The formulas for building this table: $q_n = leftlfloor frac {x_{n-1}}{x_n}rightrfloor$, $x_{n+1}=x_{n-1}-q_nx_n$, $a_{n+1}=a_{n-1}-q_na_n$, $b_{n+1}=b_{n-1}-q_nb_n$. Initialize with $x_0=1$, $x_{-1}$ the quantity we're trying to estimate, $a_{-1}=b_0=0$, $a_0=b_{-1}=1$.
If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.
Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac{891}{1619}$ approximation.
It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac{11}{20}$ approximation.
$endgroup$
add a comment |
$begingroup$
Running the extended Euclidean algorithm to find the continued fraction:
$$begin{array}{cc|cc}x&q&a&b\
hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^{-6} & 143 & 891 & -1619 \
1.25cdot 10^{-6} & 3 & -127495 & 231666end{array}$$
The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot frac{log(5/4)}{log(3/2)}approx 0.00679426$. The fraction $left|frac{log(5/4)}{log(3/2)}right|$ is approximated by $frac{|a_n|}{|b_n|}$, with increasing accuracy.
The formulas for building this table: $q_n = leftlfloor frac {x_{n-1}}{x_n}rightrfloor$, $x_{n+1}=x_{n-1}-q_nx_n$, $a_{n+1}=a_{n-1}-q_na_n$, $b_{n+1}=b_{n-1}-q_nb_n$. Initialize with $x_0=1$, $x_{-1}$ the quantity we're trying to estimate, $a_{-1}=b_0=0$, $a_0=b_{-1}=1$.
If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.
Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac{891}{1619}$ approximation.
It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac{11}{20}$ approximation.
$endgroup$
add a comment |
$begingroup$
Running the extended Euclidean algorithm to find the continued fraction:
$$begin{array}{cc|cc}x&q&a&b\
hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^{-6} & 143 & 891 & -1619 \
1.25cdot 10^{-6} & 3 & -127495 & 231666end{array}$$
The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot frac{log(5/4)}{log(3/2)}approx 0.00679426$. The fraction $left|frac{log(5/4)}{log(3/2)}right|$ is approximated by $frac{|a_n|}{|b_n|}$, with increasing accuracy.
The formulas for building this table: $q_n = leftlfloor frac {x_{n-1}}{x_n}rightrfloor$, $x_{n+1}=x_{n-1}-q_nx_n$, $a_{n+1}=a_{n-1}-q_na_n$, $b_{n+1}=b_{n-1}-q_nb_n$. Initialize with $x_0=1$, $x_{-1}$ the quantity we're trying to estimate, $a_{-1}=b_0=0$, $a_0=b_{-1}=1$.
If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.
Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac{891}{1619}$ approximation.
It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac{11}{20}$ approximation.
$endgroup$
Running the extended Euclidean algorithm to find the continued fraction:
$$begin{array}{cc|cc}x&q&a&b\
hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^{-6} & 143 & 891 & -1619 \
1.25cdot 10^{-6} & 3 & -127495 & 231666end{array}$$
The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot frac{log(5/4)}{log(3/2)}approx 0.00679426$. The fraction $left|frac{log(5/4)}{log(3/2)}right|$ is approximated by $frac{|a_n|}{|b_n|}$, with increasing accuracy.
The formulas for building this table: $q_n = leftlfloor frac {x_{n-1}}{x_n}rightrfloor$, $x_{n+1}=x_{n-1}-q_nx_n$, $a_{n+1}=a_{n-1}-q_na_n$, $b_{n+1}=b_{n-1}-q_nb_n$. Initialize with $x_0=1$, $x_{-1}$ the quantity we're trying to estimate, $a_{-1}=b_0=0$, $a_0=b_{-1}=1$.
If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.
Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac{891}{1619}$ approximation.
It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac{11}{20}$ approximation.
answered yesterday
jmerryjmerry
16.2k1633
16.2k1633
add a comment |
add a comment |
$begingroup$
The continued fraction for $frac{logleft(frac54right)}{logleft(frac32right)}$ is
$$
{0;1,1,4,2,6,1,color{#C00}{10},143,3,dots}
$$
The convergents for this continued fraction are
$$
left{0,1,frac12,frac59,frac{11}{20},frac{71}{129},frac{82}{149},color{#C00}{frac{891}{1619}},frac{127495}{231666},frac{383376}{696617},dotsright}
$$
As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac{891}{1619}$ is closer than $frac1{143cdot1619^2}$ to $frac{logleft(frac54right)}{logleft(frac32right)}$.
$endgroup$
$begingroup$
Thank you. A good addition to my answer.
$endgroup$
– Ross Millikan
yesterday
add a comment |
$begingroup$
The continued fraction for $frac{logleft(frac54right)}{logleft(frac32right)}$ is
$$
{0;1,1,4,2,6,1,color{#C00}{10},143,3,dots}
$$
The convergents for this continued fraction are
$$
left{0,1,frac12,frac59,frac{11}{20},frac{71}{129},frac{82}{149},color{#C00}{frac{891}{1619}},frac{127495}{231666},frac{383376}{696617},dotsright}
$$
As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac{891}{1619}$ is closer than $frac1{143cdot1619^2}$ to $frac{logleft(frac54right)}{logleft(frac32right)}$.
$endgroup$
$begingroup$
Thank you. A good addition to my answer.
$endgroup$
– Ross Millikan
yesterday
add a comment |
$begingroup$
The continued fraction for $frac{logleft(frac54right)}{logleft(frac32right)}$ is
$$
{0;1,1,4,2,6,1,color{#C00}{10},143,3,dots}
$$
The convergents for this continued fraction are
$$
left{0,1,frac12,frac59,frac{11}{20},frac{71}{129},frac{82}{149},color{#C00}{frac{891}{1619}},frac{127495}{231666},frac{383376}{696617},dotsright}
$$
As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac{891}{1619}$ is closer than $frac1{143cdot1619^2}$ to $frac{logleft(frac54right)}{logleft(frac32right)}$.
$endgroup$
The continued fraction for $frac{logleft(frac54right)}{logleft(frac32right)}$ is
$$
{0;1,1,4,2,6,1,color{#C00}{10},143,3,dots}
$$
The convergents for this continued fraction are
$$
left{0,1,frac12,frac59,frac{11}{20},frac{71}{129},frac{82}{149},color{#C00}{frac{891}{1619}},frac{127495}{231666},frac{383376}{696617},dotsright}
$$
As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac{891}{1619}$ is closer than $frac1{143cdot1619^2}$ to $frac{logleft(frac54right)}{logleft(frac32right)}$.
answered yesterday
robjohn♦robjohn
270k27312639
270k27312639
$begingroup$
Thank you. A good addition to my answer.
$endgroup$
– Ross Millikan
yesterday
add a comment |
$begingroup$
Thank you. A good addition to my answer.
$endgroup$
– Ross Millikan
yesterday
$begingroup$
Thank you. A good addition to my answer.
$endgroup$
– Ross Millikan
yesterday
$begingroup$
Thank you. A good addition to my answer.
$endgroup$
– Ross Millikan
yesterday
add a comment |
$begingroup$
The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac {891}{1619}approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.
$endgroup$
1
$begingroup$
(+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction approximation and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1{cq^2}$ to the value approximated.
$endgroup$
– robjohn♦
yesterday
add a comment |
$begingroup$
The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac {891}{1619}approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.
$endgroup$
1
$begingroup$
(+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction approximation and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1{cq^2}$ to the value approximated.
$endgroup$
– robjohn♦
yesterday
add a comment |
$begingroup$
The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac {891}{1619}approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.
$endgroup$
The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac {891}{1619}approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.
answered yesterday
Ross MillikanRoss Millikan
300k24200375
300k24200375
1
$begingroup$
(+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction approximation and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1{cq^2}$ to the value approximated.
$endgroup$
– robjohn♦
yesterday
add a comment |
1
$begingroup$
(+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction approximation and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1{cq^2}$ to the value approximated.
$endgroup$
– robjohn♦
yesterday
1
1
$begingroup$
(+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction approximation and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1{cq^2}$ to the value approximated.
$endgroup$
– robjohn♦
yesterday
$begingroup$
(+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction approximation and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1{cq^2}$ to the value approximated.
$endgroup$
– robjohn♦
yesterday
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160023%2fapproximating-frac-log5-4-log3-2-to-a-rational-number%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I don't understand your game, but your number approximately $0.55034$ and thus $tfrac{55034}{100000}$ or $tfrac{5503}{10000}$. What's wrong with that?
$endgroup$
– amsmath
yesterday
6
$begingroup$
The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
$endgroup$
– hardmath
yesterday
1
$begingroup$
You can take truncations of the continued fraction of that number. The first few of its values start like this.
$endgroup$
– user647486
yesterday
$begingroup$
try 82/149 ........
$endgroup$
– Will Jagy
yesterday
2
$begingroup$
Cool, a practical application of continued fractions. :)
$endgroup$
– Minus One-Twelfth
yesterday