A question about fixed points and non-expansive map
$begingroup$
Let $$K={x=(x(n))_nin l_2(mathbb{N}):|x|_2le 1 text{ and } x(n)ge 0 text{ for all } nin mathbb{N} }$$ and define $T:Kto c_0$ by $T(x)=(1-|x|_2,x(1),x(2),ldots)$. Prove :
(1) $T$ is self map on $K$ and $|Tx-Ty|_2le sqrt{2} |x-y|_2$
(2) $T $ does not have fixed points in $K$
my attempt
for (2):
suppose $T$ have fixed point i.e., $Tx=x$
then $(1-|x|_2, x(1),x(2),ldots)=(x(1),x(2),ldots)$
then $x(1)=1-|x|_2, x(2)=x(1), x(3)=x(2),ldots$
$$therefore |x|_2 =left(sum ^n_{n=infty} |x(n)|^2right)^frac{1}{2} = left(sum ^n_{n=infty} (1-|x|_2)^2right)^frac{1}{2}$$
but how to prove this $x$ is not in $K$?
how to prove (1)
functional-analysis fixed-point-theorems
$endgroup$
add a comment |
$begingroup$
Let $$K={x=(x(n))_nin l_2(mathbb{N}):|x|_2le 1 text{ and } x(n)ge 0 text{ for all } nin mathbb{N} }$$ and define $T:Kto c_0$ by $T(x)=(1-|x|_2,x(1),x(2),ldots)$. Prove :
(1) $T$ is self map on $K$ and $|Tx-Ty|_2le sqrt{2} |x-y|_2$
(2) $T $ does not have fixed points in $K$
my attempt
for (2):
suppose $T$ have fixed point i.e., $Tx=x$
then $(1-|x|_2, x(1),x(2),ldots)=(x(1),x(2),ldots)$
then $x(1)=1-|x|_2, x(2)=x(1), x(3)=x(2),ldots$
$$therefore |x|_2 =left(sum ^n_{n=infty} |x(n)|^2right)^frac{1}{2} = left(sum ^n_{n=infty} (1-|x|_2)^2right)^frac{1}{2}$$
but how to prove this $x$ is not in $K$?
how to prove (1)
functional-analysis fixed-point-theorems
$endgroup$
$begingroup$
It seems that your calculation does not match the definition of $T$.
$endgroup$
– Song
yesterday
$begingroup$
@Song..now i edited correctly thank you
$endgroup$
– Inverse Problem
yesterday
add a comment |
$begingroup$
Let $$K={x=(x(n))_nin l_2(mathbb{N}):|x|_2le 1 text{ and } x(n)ge 0 text{ for all } nin mathbb{N} }$$ and define $T:Kto c_0$ by $T(x)=(1-|x|_2,x(1),x(2),ldots)$. Prove :
(1) $T$ is self map on $K$ and $|Tx-Ty|_2le sqrt{2} |x-y|_2$
(2) $T $ does not have fixed points in $K$
my attempt
for (2):
suppose $T$ have fixed point i.e., $Tx=x$
then $(1-|x|_2, x(1),x(2),ldots)=(x(1),x(2),ldots)$
then $x(1)=1-|x|_2, x(2)=x(1), x(3)=x(2),ldots$
$$therefore |x|_2 =left(sum ^n_{n=infty} |x(n)|^2right)^frac{1}{2} = left(sum ^n_{n=infty} (1-|x|_2)^2right)^frac{1}{2}$$
but how to prove this $x$ is not in $K$?
how to prove (1)
functional-analysis fixed-point-theorems
$endgroup$
Let $$K={x=(x(n))_nin l_2(mathbb{N}):|x|_2le 1 text{ and } x(n)ge 0 text{ for all } nin mathbb{N} }$$ and define $T:Kto c_0$ by $T(x)=(1-|x|_2,x(1),x(2),ldots)$. Prove :
(1) $T$ is self map on $K$ and $|Tx-Ty|_2le sqrt{2} |x-y|_2$
(2) $T $ does not have fixed points in $K$
my attempt
for (2):
suppose $T$ have fixed point i.e., $Tx=x$
then $(1-|x|_2, x(1),x(2),ldots)=(x(1),x(2),ldots)$
then $x(1)=1-|x|_2, x(2)=x(1), x(3)=x(2),ldots$
$$therefore |x|_2 =left(sum ^n_{n=infty} |x(n)|^2right)^frac{1}{2} = left(sum ^n_{n=infty} (1-|x|_2)^2right)^frac{1}{2}$$
but how to prove this $x$ is not in $K$?
how to prove (1)
functional-analysis fixed-point-theorems
functional-analysis fixed-point-theorems
edited yesterday
mechanodroid
29k62648
29k62648
asked yesterday
Inverse ProblemInverse Problem
1,028918
1,028918
$begingroup$
It seems that your calculation does not match the definition of $T$.
$endgroup$
– Song
yesterday
$begingroup$
@Song..now i edited correctly thank you
$endgroup$
– Inverse Problem
yesterday
add a comment |
$begingroup$
It seems that your calculation does not match the definition of $T$.
$endgroup$
– Song
yesterday
$begingroup$
@Song..now i edited correctly thank you
$endgroup$
– Inverse Problem
yesterday
$begingroup$
It seems that your calculation does not match the definition of $T$.
$endgroup$
– Song
yesterday
$begingroup$
It seems that your calculation does not match the definition of $T$.
$endgroup$
– Song
yesterday
$begingroup$
@Song..now i edited correctly thank you
$endgroup$
– Inverse Problem
yesterday
$begingroup$
@Song..now i edited correctly thank you
$endgroup$
– Inverse Problem
yesterday
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
For $(2)$ you got that if $Tx = x$ then $$x = (1-|x|_2, 1-|x|_2, ldots)$$
so $$+infty > |x|_2^2 = sum_{n=1}^infty (1-|x|_2)^2$$
The only way this series converges is if $1-|x|_2 = 0$, or $|x|_2 = 1$, so $x = (1,1,1ldots )$. But then clearly $|x|_2 = +infty$ and not $1$ so this is a contradiction.
To show that $T$ is actually a map $K to K$, take $x in K$ and we claim that $Tx in K$ as well.
Since $|x|_2 le 1$ we have $1-|x|_2 ge 0$ so
begin{align}
|Tx|_2^2 &= (1-|x|_2)^2 + sum_{n=1}^infty |x_n|^2 \
&= (1-|x|_2)^2 + |x|_2^2 \
&le (1-|x|_2)^2 + 2(1-|x|_2)|x|_2 + |x|_2^2 \
&= (1-|x|_2+|x|_2)^2 \
&= 1
end{align}
which means $|Tx|_2 le 1$.
Also clearly all coordinates of $$Tx = (1-|x|_2, x_1, x_2, ldots)$$
are nonnegative since $x_n ge 0, forall n in mathbb{N}$ and $1-|x|_2 ge 0$.
Therefore $Tx in K$.
$endgroup$
$begingroup$
@mechanodroid...thank you so much but i have doubt with how to show $T$ is self map in question (1)
$endgroup$
– Inverse Problem
yesterday
$begingroup$
@InverseProblem Have a look.
$endgroup$
– mechanodroid
yesterday
$begingroup$
@mechanodroid......thank you so much ......for your help
$endgroup$
– Inverse Problem
yesterday
$begingroup$
@mechanodroid...can you give some hint this question please...math.stackexchange.com/questions/3159556/…
$endgroup$
– Inverse Problem
yesterday
$begingroup$
@InverseProblem I have added an answer, can you explain what exactly is $T$ in the definition of $T_n$?
$endgroup$
– mechanodroid
yesterday
add a comment |
$begingroup$
You're on the right track.
As you said - $||x||_2 =(sum ^infty_{n=1} |1-||x|||_2|^2)^frac{1}{2}$
There is only one possible way for this sum to converge - if and only if $||x||_2=1$. But in this case, we also get $||x||_2=0$ - a contradiction.
About (1) - let's try evaluating the required norm:
$||Tx-Ty||_2=||(1-||x||_2,x(1),x(2),...)-(1-||y||_2,y(1),y(2),...)||_2\=||(||y||_2-||x||_2,x(1)-y(1),x(2)-y(2),...)||_2\=(|||y||_2-||x||_2|^2+sum ^infty_{n=2} |x(n)-y(n)|^2)^frac{1}{2}\=(|||y||_2-||x||_2|^2-|x(1)-y(1)|^2+sum ^infty_{n=1} |x(n)-y(n)|^2)^frac{1}{2}\leq(||x-y||_2^2-|x(1)-y(1)|^2+||x-y||_2^2)^frac{1}{2}\=(2||x-y||_2^2-|x(1)-y(1)|^2)^frac{1}{2}\ leq sqrt2||x-y||_2$
(Every $leq$ sign is due to triangle inequality)
$endgroup$
$begingroup$
..can you tell me how to prove self map
$endgroup$
– Inverse Problem
yesterday
$begingroup$
I'm not familiar with that term, what does it mean?
$endgroup$
– GSofer
yesterday
$begingroup$
it means that we have to prove $T$ map from $K$ to $K$
$endgroup$
– Inverse Problem
yesterday
add a comment |
$begingroup$
It seems to me one may not need the assumption $x(n)geq 0$. In fact, if $Tx=x$,
then $|Tx|^2=|x|^2$ which says $(1-|x|)^2+x(1)^2+x(2)^2...=x(1)^2+x(2)^2+...$,
so we see $|x|=1$. Then $x(1)=0$. Let $n$ be the first integer with $x(n)neq 0$,
there exists such $n$ since $|x|=1$.
So $x(n-1)=0$, but the $n$-th component in $Tx$ is $x(n-1)=0$, contradicts
$Tx=x$ and $x(n)neq 0$.
Part 1: $|Tx-Ty|^2=[(1-|x|)-(1-|y|)]^2+[x(1)-y(1)]^2+...=(|x|-|y|)^2+|x-y|^2leq |x-y|^2+|x-y|^2=2|x-y|^2$ .
$endgroup$
$begingroup$
Ding....can you tell how to prove this is self map
$endgroup$
– Inverse Problem
yesterday
$begingroup$
From $|x|leq 1$, the condition $x(n)geq 0$ is preserved by $T$. Next, $|Tx|^2=(1-|x|)^2+|x|^2leq 1$, here one uses the elementary inequality $(1-a)^2+a^2leq 1$ when $0leq aleq 1$, which can be checked by finding the maximum of $(1-a)^2+a^2$ on $[0, 1]$.
$endgroup$
– Yu Ding
yesterday
$begingroup$
what is this mean when u want to prove a map is self map it means we have to prove that map itself to a set
$endgroup$
– Inverse Problem
yesterday
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160256%2fa-question-about-fixed-points-and-non-expansive-map%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For $(2)$ you got that if $Tx = x$ then $$x = (1-|x|_2, 1-|x|_2, ldots)$$
so $$+infty > |x|_2^2 = sum_{n=1}^infty (1-|x|_2)^2$$
The only way this series converges is if $1-|x|_2 = 0$, or $|x|_2 = 1$, so $x = (1,1,1ldots )$. But then clearly $|x|_2 = +infty$ and not $1$ so this is a contradiction.
To show that $T$ is actually a map $K to K$, take $x in K$ and we claim that $Tx in K$ as well.
Since $|x|_2 le 1$ we have $1-|x|_2 ge 0$ so
begin{align}
|Tx|_2^2 &= (1-|x|_2)^2 + sum_{n=1}^infty |x_n|^2 \
&= (1-|x|_2)^2 + |x|_2^2 \
&le (1-|x|_2)^2 + 2(1-|x|_2)|x|_2 + |x|_2^2 \
&= (1-|x|_2+|x|_2)^2 \
&= 1
end{align}
which means $|Tx|_2 le 1$.
Also clearly all coordinates of $$Tx = (1-|x|_2, x_1, x_2, ldots)$$
are nonnegative since $x_n ge 0, forall n in mathbb{N}$ and $1-|x|_2 ge 0$.
Therefore $Tx in K$.
$endgroup$
$begingroup$
@mechanodroid...thank you so much but i have doubt with how to show $T$ is self map in question (1)
$endgroup$
– Inverse Problem
yesterday
$begingroup$
@InverseProblem Have a look.
$endgroup$
– mechanodroid
yesterday
$begingroup$
@mechanodroid......thank you so much ......for your help
$endgroup$
– Inverse Problem
yesterday
$begingroup$
@mechanodroid...can you give some hint this question please...math.stackexchange.com/questions/3159556/…
$endgroup$
– Inverse Problem
yesterday
$begingroup$
@InverseProblem I have added an answer, can you explain what exactly is $T$ in the definition of $T_n$?
$endgroup$
– mechanodroid
yesterday
add a comment |
$begingroup$
For $(2)$ you got that if $Tx = x$ then $$x = (1-|x|_2, 1-|x|_2, ldots)$$
so $$+infty > |x|_2^2 = sum_{n=1}^infty (1-|x|_2)^2$$
The only way this series converges is if $1-|x|_2 = 0$, or $|x|_2 = 1$, so $x = (1,1,1ldots )$. But then clearly $|x|_2 = +infty$ and not $1$ so this is a contradiction.
To show that $T$ is actually a map $K to K$, take $x in K$ and we claim that $Tx in K$ as well.
Since $|x|_2 le 1$ we have $1-|x|_2 ge 0$ so
begin{align}
|Tx|_2^2 &= (1-|x|_2)^2 + sum_{n=1}^infty |x_n|^2 \
&= (1-|x|_2)^2 + |x|_2^2 \
&le (1-|x|_2)^2 + 2(1-|x|_2)|x|_2 + |x|_2^2 \
&= (1-|x|_2+|x|_2)^2 \
&= 1
end{align}
which means $|Tx|_2 le 1$.
Also clearly all coordinates of $$Tx = (1-|x|_2, x_1, x_2, ldots)$$
are nonnegative since $x_n ge 0, forall n in mathbb{N}$ and $1-|x|_2 ge 0$.
Therefore $Tx in K$.
$endgroup$
$begingroup$
@mechanodroid...thank you so much but i have doubt with how to show $T$ is self map in question (1)
$endgroup$
– Inverse Problem
yesterday
$begingroup$
@InverseProblem Have a look.
$endgroup$
– mechanodroid
yesterday
$begingroup$
@mechanodroid......thank you so much ......for your help
$endgroup$
– Inverse Problem
yesterday
$begingroup$
@mechanodroid...can you give some hint this question please...math.stackexchange.com/questions/3159556/…
$endgroup$
– Inverse Problem
yesterday
$begingroup$
@InverseProblem I have added an answer, can you explain what exactly is $T$ in the definition of $T_n$?
$endgroup$
– mechanodroid
yesterday
add a comment |
$begingroup$
For $(2)$ you got that if $Tx = x$ then $$x = (1-|x|_2, 1-|x|_2, ldots)$$
so $$+infty > |x|_2^2 = sum_{n=1}^infty (1-|x|_2)^2$$
The only way this series converges is if $1-|x|_2 = 0$, or $|x|_2 = 1$, so $x = (1,1,1ldots )$. But then clearly $|x|_2 = +infty$ and not $1$ so this is a contradiction.
To show that $T$ is actually a map $K to K$, take $x in K$ and we claim that $Tx in K$ as well.
Since $|x|_2 le 1$ we have $1-|x|_2 ge 0$ so
begin{align}
|Tx|_2^2 &= (1-|x|_2)^2 + sum_{n=1}^infty |x_n|^2 \
&= (1-|x|_2)^2 + |x|_2^2 \
&le (1-|x|_2)^2 + 2(1-|x|_2)|x|_2 + |x|_2^2 \
&= (1-|x|_2+|x|_2)^2 \
&= 1
end{align}
which means $|Tx|_2 le 1$.
Also clearly all coordinates of $$Tx = (1-|x|_2, x_1, x_2, ldots)$$
are nonnegative since $x_n ge 0, forall n in mathbb{N}$ and $1-|x|_2 ge 0$.
Therefore $Tx in K$.
$endgroup$
For $(2)$ you got that if $Tx = x$ then $$x = (1-|x|_2, 1-|x|_2, ldots)$$
so $$+infty > |x|_2^2 = sum_{n=1}^infty (1-|x|_2)^2$$
The only way this series converges is if $1-|x|_2 = 0$, or $|x|_2 = 1$, so $x = (1,1,1ldots )$. But then clearly $|x|_2 = +infty$ and not $1$ so this is a contradiction.
To show that $T$ is actually a map $K to K$, take $x in K$ and we claim that $Tx in K$ as well.
Since $|x|_2 le 1$ we have $1-|x|_2 ge 0$ so
begin{align}
|Tx|_2^2 &= (1-|x|_2)^2 + sum_{n=1}^infty |x_n|^2 \
&= (1-|x|_2)^2 + |x|_2^2 \
&le (1-|x|_2)^2 + 2(1-|x|_2)|x|_2 + |x|_2^2 \
&= (1-|x|_2+|x|_2)^2 \
&= 1
end{align}
which means $|Tx|_2 le 1$.
Also clearly all coordinates of $$Tx = (1-|x|_2, x_1, x_2, ldots)$$
are nonnegative since $x_n ge 0, forall n in mathbb{N}$ and $1-|x|_2 ge 0$.
Therefore $Tx in K$.
edited yesterday
answered yesterday
mechanodroidmechanodroid
29k62648
29k62648
$begingroup$
@mechanodroid...thank you so much but i have doubt with how to show $T$ is self map in question (1)
$endgroup$
– Inverse Problem
yesterday
$begingroup$
@InverseProblem Have a look.
$endgroup$
– mechanodroid
yesterday
$begingroup$
@mechanodroid......thank you so much ......for your help
$endgroup$
– Inverse Problem
yesterday
$begingroup$
@mechanodroid...can you give some hint this question please...math.stackexchange.com/questions/3159556/…
$endgroup$
– Inverse Problem
yesterday
$begingroup$
@InverseProblem I have added an answer, can you explain what exactly is $T$ in the definition of $T_n$?
$endgroup$
– mechanodroid
yesterday
add a comment |
$begingroup$
@mechanodroid...thank you so much but i have doubt with how to show $T$ is self map in question (1)
$endgroup$
– Inverse Problem
yesterday
$begingroup$
@InverseProblem Have a look.
$endgroup$
– mechanodroid
yesterday
$begingroup$
@mechanodroid......thank you so much ......for your help
$endgroup$
– Inverse Problem
yesterday
$begingroup$
@mechanodroid...can you give some hint this question please...math.stackexchange.com/questions/3159556/…
$endgroup$
– Inverse Problem
yesterday
$begingroup$
@InverseProblem I have added an answer, can you explain what exactly is $T$ in the definition of $T_n$?
$endgroup$
– mechanodroid
yesterday
$begingroup$
@mechanodroid...thank you so much but i have doubt with how to show $T$ is self map in question (1)
$endgroup$
– Inverse Problem
yesterday
$begingroup$
@mechanodroid...thank you so much but i have doubt with how to show $T$ is self map in question (1)
$endgroup$
– Inverse Problem
yesterday
$begingroup$
@InverseProblem Have a look.
$endgroup$
– mechanodroid
yesterday
$begingroup$
@InverseProblem Have a look.
$endgroup$
– mechanodroid
yesterday
$begingroup$
@mechanodroid......thank you so much ......for your help
$endgroup$
– Inverse Problem
yesterday
$begingroup$
@mechanodroid......thank you so much ......for your help
$endgroup$
– Inverse Problem
yesterday
$begingroup$
@mechanodroid...can you give some hint this question please...math.stackexchange.com/questions/3159556/…
$endgroup$
– Inverse Problem
yesterday
$begingroup$
@mechanodroid...can you give some hint this question please...math.stackexchange.com/questions/3159556/…
$endgroup$
– Inverse Problem
yesterday
$begingroup$
@InverseProblem I have added an answer, can you explain what exactly is $T$ in the definition of $T_n$?
$endgroup$
– mechanodroid
yesterday
$begingroup$
@InverseProblem I have added an answer, can you explain what exactly is $T$ in the definition of $T_n$?
$endgroup$
– mechanodroid
yesterday
add a comment |
$begingroup$
You're on the right track.
As you said - $||x||_2 =(sum ^infty_{n=1} |1-||x|||_2|^2)^frac{1}{2}$
There is only one possible way for this sum to converge - if and only if $||x||_2=1$. But in this case, we also get $||x||_2=0$ - a contradiction.
About (1) - let's try evaluating the required norm:
$||Tx-Ty||_2=||(1-||x||_2,x(1),x(2),...)-(1-||y||_2,y(1),y(2),...)||_2\=||(||y||_2-||x||_2,x(1)-y(1),x(2)-y(2),...)||_2\=(|||y||_2-||x||_2|^2+sum ^infty_{n=2} |x(n)-y(n)|^2)^frac{1}{2}\=(|||y||_2-||x||_2|^2-|x(1)-y(1)|^2+sum ^infty_{n=1} |x(n)-y(n)|^2)^frac{1}{2}\leq(||x-y||_2^2-|x(1)-y(1)|^2+||x-y||_2^2)^frac{1}{2}\=(2||x-y||_2^2-|x(1)-y(1)|^2)^frac{1}{2}\ leq sqrt2||x-y||_2$
(Every $leq$ sign is due to triangle inequality)
$endgroup$
$begingroup$
..can you tell me how to prove self map
$endgroup$
– Inverse Problem
yesterday
$begingroup$
I'm not familiar with that term, what does it mean?
$endgroup$
– GSofer
yesterday
$begingroup$
it means that we have to prove $T$ map from $K$ to $K$
$endgroup$
– Inverse Problem
yesterday
add a comment |
$begingroup$
You're on the right track.
As you said - $||x||_2 =(sum ^infty_{n=1} |1-||x|||_2|^2)^frac{1}{2}$
There is only one possible way for this sum to converge - if and only if $||x||_2=1$. But in this case, we also get $||x||_2=0$ - a contradiction.
About (1) - let's try evaluating the required norm:
$||Tx-Ty||_2=||(1-||x||_2,x(1),x(2),...)-(1-||y||_2,y(1),y(2),...)||_2\=||(||y||_2-||x||_2,x(1)-y(1),x(2)-y(2),...)||_2\=(|||y||_2-||x||_2|^2+sum ^infty_{n=2} |x(n)-y(n)|^2)^frac{1}{2}\=(|||y||_2-||x||_2|^2-|x(1)-y(1)|^2+sum ^infty_{n=1} |x(n)-y(n)|^2)^frac{1}{2}\leq(||x-y||_2^2-|x(1)-y(1)|^2+||x-y||_2^2)^frac{1}{2}\=(2||x-y||_2^2-|x(1)-y(1)|^2)^frac{1}{2}\ leq sqrt2||x-y||_2$
(Every $leq$ sign is due to triangle inequality)
$endgroup$
$begingroup$
..can you tell me how to prove self map
$endgroup$
– Inverse Problem
yesterday
$begingroup$
I'm not familiar with that term, what does it mean?
$endgroup$
– GSofer
yesterday
$begingroup$
it means that we have to prove $T$ map from $K$ to $K$
$endgroup$
– Inverse Problem
yesterday
add a comment |
$begingroup$
You're on the right track.
As you said - $||x||_2 =(sum ^infty_{n=1} |1-||x|||_2|^2)^frac{1}{2}$
There is only one possible way for this sum to converge - if and only if $||x||_2=1$. But in this case, we also get $||x||_2=0$ - a contradiction.
About (1) - let's try evaluating the required norm:
$||Tx-Ty||_2=||(1-||x||_2,x(1),x(2),...)-(1-||y||_2,y(1),y(2),...)||_2\=||(||y||_2-||x||_2,x(1)-y(1),x(2)-y(2),...)||_2\=(|||y||_2-||x||_2|^2+sum ^infty_{n=2} |x(n)-y(n)|^2)^frac{1}{2}\=(|||y||_2-||x||_2|^2-|x(1)-y(1)|^2+sum ^infty_{n=1} |x(n)-y(n)|^2)^frac{1}{2}\leq(||x-y||_2^2-|x(1)-y(1)|^2+||x-y||_2^2)^frac{1}{2}\=(2||x-y||_2^2-|x(1)-y(1)|^2)^frac{1}{2}\ leq sqrt2||x-y||_2$
(Every $leq$ sign is due to triangle inequality)
$endgroup$
You're on the right track.
As you said - $||x||_2 =(sum ^infty_{n=1} |1-||x|||_2|^2)^frac{1}{2}$
There is only one possible way for this sum to converge - if and only if $||x||_2=1$. But in this case, we also get $||x||_2=0$ - a contradiction.
About (1) - let's try evaluating the required norm:
$||Tx-Ty||_2=||(1-||x||_2,x(1),x(2),...)-(1-||y||_2,y(1),y(2),...)||_2\=||(||y||_2-||x||_2,x(1)-y(1),x(2)-y(2),...)||_2\=(|||y||_2-||x||_2|^2+sum ^infty_{n=2} |x(n)-y(n)|^2)^frac{1}{2}\=(|||y||_2-||x||_2|^2-|x(1)-y(1)|^2+sum ^infty_{n=1} |x(n)-y(n)|^2)^frac{1}{2}\leq(||x-y||_2^2-|x(1)-y(1)|^2+||x-y||_2^2)^frac{1}{2}\=(2||x-y||_2^2-|x(1)-y(1)|^2)^frac{1}{2}\ leq sqrt2||x-y||_2$
(Every $leq$ sign is due to triangle inequality)
edited yesterday
answered yesterday
GSoferGSofer
781313
781313
$begingroup$
..can you tell me how to prove self map
$endgroup$
– Inverse Problem
yesterday
$begingroup$
I'm not familiar with that term, what does it mean?
$endgroup$
– GSofer
yesterday
$begingroup$
it means that we have to prove $T$ map from $K$ to $K$
$endgroup$
– Inverse Problem
yesterday
add a comment |
$begingroup$
..can you tell me how to prove self map
$endgroup$
– Inverse Problem
yesterday
$begingroup$
I'm not familiar with that term, what does it mean?
$endgroup$
– GSofer
yesterday
$begingroup$
it means that we have to prove $T$ map from $K$ to $K$
$endgroup$
– Inverse Problem
yesterday
$begingroup$
..can you tell me how to prove self map
$endgroup$
– Inverse Problem
yesterday
$begingroup$
..can you tell me how to prove self map
$endgroup$
– Inverse Problem
yesterday
$begingroup$
I'm not familiar with that term, what does it mean?
$endgroup$
– GSofer
yesterday
$begingroup$
I'm not familiar with that term, what does it mean?
$endgroup$
– GSofer
yesterday
$begingroup$
it means that we have to prove $T$ map from $K$ to $K$
$endgroup$
– Inverse Problem
yesterday
$begingroup$
it means that we have to prove $T$ map from $K$ to $K$
$endgroup$
– Inverse Problem
yesterday
add a comment |
$begingroup$
It seems to me one may not need the assumption $x(n)geq 0$. In fact, if $Tx=x$,
then $|Tx|^2=|x|^2$ which says $(1-|x|)^2+x(1)^2+x(2)^2...=x(1)^2+x(2)^2+...$,
so we see $|x|=1$. Then $x(1)=0$. Let $n$ be the first integer with $x(n)neq 0$,
there exists such $n$ since $|x|=1$.
So $x(n-1)=0$, but the $n$-th component in $Tx$ is $x(n-1)=0$, contradicts
$Tx=x$ and $x(n)neq 0$.
Part 1: $|Tx-Ty|^2=[(1-|x|)-(1-|y|)]^2+[x(1)-y(1)]^2+...=(|x|-|y|)^2+|x-y|^2leq |x-y|^2+|x-y|^2=2|x-y|^2$ .
$endgroup$
$begingroup$
Ding....can you tell how to prove this is self map
$endgroup$
– Inverse Problem
yesterday
$begingroup$
From $|x|leq 1$, the condition $x(n)geq 0$ is preserved by $T$. Next, $|Tx|^2=(1-|x|)^2+|x|^2leq 1$, here one uses the elementary inequality $(1-a)^2+a^2leq 1$ when $0leq aleq 1$, which can be checked by finding the maximum of $(1-a)^2+a^2$ on $[0, 1]$.
$endgroup$
– Yu Ding
yesterday
$begingroup$
what is this mean when u want to prove a map is self map it means we have to prove that map itself to a set
$endgroup$
– Inverse Problem
yesterday
add a comment |
$begingroup$
It seems to me one may not need the assumption $x(n)geq 0$. In fact, if $Tx=x$,
then $|Tx|^2=|x|^2$ which says $(1-|x|)^2+x(1)^2+x(2)^2...=x(1)^2+x(2)^2+...$,
so we see $|x|=1$. Then $x(1)=0$. Let $n$ be the first integer with $x(n)neq 0$,
there exists such $n$ since $|x|=1$.
So $x(n-1)=0$, but the $n$-th component in $Tx$ is $x(n-1)=0$, contradicts
$Tx=x$ and $x(n)neq 0$.
Part 1: $|Tx-Ty|^2=[(1-|x|)-(1-|y|)]^2+[x(1)-y(1)]^2+...=(|x|-|y|)^2+|x-y|^2leq |x-y|^2+|x-y|^2=2|x-y|^2$ .
$endgroup$
$begingroup$
Ding....can you tell how to prove this is self map
$endgroup$
– Inverse Problem
yesterday
$begingroup$
From $|x|leq 1$, the condition $x(n)geq 0$ is preserved by $T$. Next, $|Tx|^2=(1-|x|)^2+|x|^2leq 1$, here one uses the elementary inequality $(1-a)^2+a^2leq 1$ when $0leq aleq 1$, which can be checked by finding the maximum of $(1-a)^2+a^2$ on $[0, 1]$.
$endgroup$
– Yu Ding
yesterday
$begingroup$
what is this mean when u want to prove a map is self map it means we have to prove that map itself to a set
$endgroup$
– Inverse Problem
yesterday
add a comment |
$begingroup$
It seems to me one may not need the assumption $x(n)geq 0$. In fact, if $Tx=x$,
then $|Tx|^2=|x|^2$ which says $(1-|x|)^2+x(1)^2+x(2)^2...=x(1)^2+x(2)^2+...$,
so we see $|x|=1$. Then $x(1)=0$. Let $n$ be the first integer with $x(n)neq 0$,
there exists such $n$ since $|x|=1$.
So $x(n-1)=0$, but the $n$-th component in $Tx$ is $x(n-1)=0$, contradicts
$Tx=x$ and $x(n)neq 0$.
Part 1: $|Tx-Ty|^2=[(1-|x|)-(1-|y|)]^2+[x(1)-y(1)]^2+...=(|x|-|y|)^2+|x-y|^2leq |x-y|^2+|x-y|^2=2|x-y|^2$ .
$endgroup$
It seems to me one may not need the assumption $x(n)geq 0$. In fact, if $Tx=x$,
then $|Tx|^2=|x|^2$ which says $(1-|x|)^2+x(1)^2+x(2)^2...=x(1)^2+x(2)^2+...$,
so we see $|x|=1$. Then $x(1)=0$. Let $n$ be the first integer with $x(n)neq 0$,
there exists such $n$ since $|x|=1$.
So $x(n-1)=0$, but the $n$-th component in $Tx$ is $x(n-1)=0$, contradicts
$Tx=x$ and $x(n)neq 0$.
Part 1: $|Tx-Ty|^2=[(1-|x|)-(1-|y|)]^2+[x(1)-y(1)]^2+...=(|x|-|y|)^2+|x-y|^2leq |x-y|^2+|x-y|^2=2|x-y|^2$ .
answered yesterday
Yu DingYu Ding
5186
5186
$begingroup$
Ding....can you tell how to prove this is self map
$endgroup$
– Inverse Problem
yesterday
$begingroup$
From $|x|leq 1$, the condition $x(n)geq 0$ is preserved by $T$. Next, $|Tx|^2=(1-|x|)^2+|x|^2leq 1$, here one uses the elementary inequality $(1-a)^2+a^2leq 1$ when $0leq aleq 1$, which can be checked by finding the maximum of $(1-a)^2+a^2$ on $[0, 1]$.
$endgroup$
– Yu Ding
yesterday
$begingroup$
what is this mean when u want to prove a map is self map it means we have to prove that map itself to a set
$endgroup$
– Inverse Problem
yesterday
add a comment |
$begingroup$
Ding....can you tell how to prove this is self map
$endgroup$
– Inverse Problem
yesterday
$begingroup$
From $|x|leq 1$, the condition $x(n)geq 0$ is preserved by $T$. Next, $|Tx|^2=(1-|x|)^2+|x|^2leq 1$, here one uses the elementary inequality $(1-a)^2+a^2leq 1$ when $0leq aleq 1$, which can be checked by finding the maximum of $(1-a)^2+a^2$ on $[0, 1]$.
$endgroup$
– Yu Ding
yesterday
$begingroup$
what is this mean when u want to prove a map is self map it means we have to prove that map itself to a set
$endgroup$
– Inverse Problem
yesterday
$begingroup$
Ding....can you tell how to prove this is self map
$endgroup$
– Inverse Problem
yesterday
$begingroup$
Ding....can you tell how to prove this is self map
$endgroup$
– Inverse Problem
yesterday
$begingroup$
From $|x|leq 1$, the condition $x(n)geq 0$ is preserved by $T$. Next, $|Tx|^2=(1-|x|)^2+|x|^2leq 1$, here one uses the elementary inequality $(1-a)^2+a^2leq 1$ when $0leq aleq 1$, which can be checked by finding the maximum of $(1-a)^2+a^2$ on $[0, 1]$.
$endgroup$
– Yu Ding
yesterday
$begingroup$
From $|x|leq 1$, the condition $x(n)geq 0$ is preserved by $T$. Next, $|Tx|^2=(1-|x|)^2+|x|^2leq 1$, here one uses the elementary inequality $(1-a)^2+a^2leq 1$ when $0leq aleq 1$, which can be checked by finding the maximum of $(1-a)^2+a^2$ on $[0, 1]$.
$endgroup$
– Yu Ding
yesterday
$begingroup$
what is this mean when u want to prove a map is self map it means we have to prove that map itself to a set
$endgroup$
– Inverse Problem
yesterday
$begingroup$
what is this mean when u want to prove a map is self map it means we have to prove that map itself to a set
$endgroup$
– Inverse Problem
yesterday
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160256%2fa-question-about-fixed-points-and-non-expansive-map%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
It seems that your calculation does not match the definition of $T$.
$endgroup$
– Song
yesterday
$begingroup$
@Song..now i edited correctly thank you
$endgroup$
– Inverse Problem
yesterday