Possible to detect presence of nuclear bomb?












4












$begingroup$


Take, for instance, a W-80 nuclear warhead. Does technology exist, say in the form of a satellite or drone, that could detect the warhead's presence (assuming it's not enclosed in some kind of shielding)?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Related: physics.stackexchange.com/q/6906. Short version: it's always enclosed in the shielding provided by the atmosphere.
    $endgroup$
    – dmckee
    2 hours ago












  • $begingroup$
    Thanks for that link, @dmckee.
    $endgroup$
    – birdus
    2 hours ago
















4












$begingroup$


Take, for instance, a W-80 nuclear warhead. Does technology exist, say in the form of a satellite or drone, that could detect the warhead's presence (assuming it's not enclosed in some kind of shielding)?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Related: physics.stackexchange.com/q/6906. Short version: it's always enclosed in the shielding provided by the atmosphere.
    $endgroup$
    – dmckee
    2 hours ago












  • $begingroup$
    Thanks for that link, @dmckee.
    $endgroup$
    – birdus
    2 hours ago














4












4








4





$begingroup$


Take, for instance, a W-80 nuclear warhead. Does technology exist, say in the form of a satellite or drone, that could detect the warhead's presence (assuming it's not enclosed in some kind of shielding)?










share|cite|improve this question











$endgroup$




Take, for instance, a W-80 nuclear warhead. Does technology exist, say in the form of a satellite or drone, that could detect the warhead's presence (assuming it's not enclosed in some kind of shielding)?







nuclear-physics radiation radioactivity






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 hours ago









Qmechanic

106k121941214




106k121941214










asked 2 hours ago









birdusbirdus

1364




1364








  • 1




    $begingroup$
    Related: physics.stackexchange.com/q/6906. Short version: it's always enclosed in the shielding provided by the atmosphere.
    $endgroup$
    – dmckee
    2 hours ago












  • $begingroup$
    Thanks for that link, @dmckee.
    $endgroup$
    – birdus
    2 hours ago














  • 1




    $begingroup$
    Related: physics.stackexchange.com/q/6906. Short version: it's always enclosed in the shielding provided by the atmosphere.
    $endgroup$
    – dmckee
    2 hours ago












  • $begingroup$
    Thanks for that link, @dmckee.
    $endgroup$
    – birdus
    2 hours ago








1




1




$begingroup$
Related: physics.stackexchange.com/q/6906. Short version: it's always enclosed in the shielding provided by the atmosphere.
$endgroup$
– dmckee
2 hours ago






$begingroup$
Related: physics.stackexchange.com/q/6906. Short version: it's always enclosed in the shielding provided by the atmosphere.
$endgroup$
– dmckee
2 hours ago














$begingroup$
Thanks for that link, @dmckee.
$endgroup$
– birdus
2 hours ago




$begingroup$
Thanks for that link, @dmckee.
$endgroup$
– birdus
2 hours ago










1 Answer
1






active

oldest

votes


















7












$begingroup$

No. It's not even possible to detect one that's inside a suitcase or a shipping container. There's a famous story about how a senator asked Oppenheimer in 1946 whether terrorists could blow up New York this way, or whether there was any tool that could detect the bomb when it was brought into the country. Oppenheimer famously replied, "a screwdriver" -- meaning that you would have to open the box to find out.



Although considerable effort has been dedicated since then to trying to improve detection techniques, highly enriched uranium (HEU) is particularly difficult to detect. It only emits alpha particles, and therefore all you have to do is wrap it in newspaper, and its radiation becomes undetectable.



The APS has a publicly available report on this topic, which goes into some of the physics. There are passive and active methods. Active means that you do something to the material in order to test it, as opposed to just trying to detect the radiation that it's putting out. Re passive detection of HEU:




Currently, passive detection is accomplished primarily by observation of either neutrons and/or photons emitted by spontaneous fission and by photons emitted in radioactive decay and neutron capture. Highly-enriched uranium (HEU) emits a number of relatively intense low-energy gamma rays that are largely absorbed by the material itself and are easily absorbed by most surrounding materials. The more penetrating photons emitted are of low abundance. If the HEU contains reactor-irradiated material, significant contamination by 232U can be found that may be detected through the emission of the 2615-keV gamma ray in the decay of 208Tl. Emission of neutrons from highly enriched uranium (HEU) is quite weak because of the low rate of spontaneous fission.




There are active methods of detection, but they involve radiation that you can't expose people to.






share|cite|improve this answer











$endgroup$









  • 2




    $begingroup$
    There are various active tools for detecting concentrations of fissile materials in containers around these days. They are not generally good for biological systems, however, so you have to take the suitcase away from it's owner or scan a shipping container for human cargo before you run the tests.
    $endgroup$
    – dmckee
    2 hours ago












  • $begingroup$
    @dmckee If a guy had a W-80 in the trunk of his car, does any technology exist that could find him as he drove down the highway? Just trying not to sound like an idiot for the sake of my novel.
    $endgroup$
    – birdus
    2 hours ago








  • 2




    $begingroup$
    @birdus All the techniques I know of (x- and gamma-ray back scatter, neutron fluorescence, etc..) would imposes a non-trivial ionizing radiation dose on every person driving down the road. This stuff saw a huge jump in funding starting in 2002, but it's not a easy problem and the "working" systems all have a problem with false positives. They count on being able to re-scan more slowly when the big red light turns on to sort out real event from statistical fluctuations (which cause essentially all the positive results).
    $endgroup$
    – dmckee
    2 hours ago













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "151"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f465777%2fpossible-to-detect-presence-of-nuclear-bomb%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









7












$begingroup$

No. It's not even possible to detect one that's inside a suitcase or a shipping container. There's a famous story about how a senator asked Oppenheimer in 1946 whether terrorists could blow up New York this way, or whether there was any tool that could detect the bomb when it was brought into the country. Oppenheimer famously replied, "a screwdriver" -- meaning that you would have to open the box to find out.



Although considerable effort has been dedicated since then to trying to improve detection techniques, highly enriched uranium (HEU) is particularly difficult to detect. It only emits alpha particles, and therefore all you have to do is wrap it in newspaper, and its radiation becomes undetectable.



The APS has a publicly available report on this topic, which goes into some of the physics. There are passive and active methods. Active means that you do something to the material in order to test it, as opposed to just trying to detect the radiation that it's putting out. Re passive detection of HEU:




Currently, passive detection is accomplished primarily by observation of either neutrons and/or photons emitted by spontaneous fission and by photons emitted in radioactive decay and neutron capture. Highly-enriched uranium (HEU) emits a number of relatively intense low-energy gamma rays that are largely absorbed by the material itself and are easily absorbed by most surrounding materials. The more penetrating photons emitted are of low abundance. If the HEU contains reactor-irradiated material, significant contamination by 232U can be found that may be detected through the emission of the 2615-keV gamma ray in the decay of 208Tl. Emission of neutrons from highly enriched uranium (HEU) is quite weak because of the low rate of spontaneous fission.




There are active methods of detection, but they involve radiation that you can't expose people to.






share|cite|improve this answer











$endgroup$









  • 2




    $begingroup$
    There are various active tools for detecting concentrations of fissile materials in containers around these days. They are not generally good for biological systems, however, so you have to take the suitcase away from it's owner or scan a shipping container for human cargo before you run the tests.
    $endgroup$
    – dmckee
    2 hours ago












  • $begingroup$
    @dmckee If a guy had a W-80 in the trunk of his car, does any technology exist that could find him as he drove down the highway? Just trying not to sound like an idiot for the sake of my novel.
    $endgroup$
    – birdus
    2 hours ago








  • 2




    $begingroup$
    @birdus All the techniques I know of (x- and gamma-ray back scatter, neutron fluorescence, etc..) would imposes a non-trivial ionizing radiation dose on every person driving down the road. This stuff saw a huge jump in funding starting in 2002, but it's not a easy problem and the "working" systems all have a problem with false positives. They count on being able to re-scan more slowly when the big red light turns on to sort out real event from statistical fluctuations (which cause essentially all the positive results).
    $endgroup$
    – dmckee
    2 hours ago


















7












$begingroup$

No. It's not even possible to detect one that's inside a suitcase or a shipping container. There's a famous story about how a senator asked Oppenheimer in 1946 whether terrorists could blow up New York this way, or whether there was any tool that could detect the bomb when it was brought into the country. Oppenheimer famously replied, "a screwdriver" -- meaning that you would have to open the box to find out.



Although considerable effort has been dedicated since then to trying to improve detection techniques, highly enriched uranium (HEU) is particularly difficult to detect. It only emits alpha particles, and therefore all you have to do is wrap it in newspaper, and its radiation becomes undetectable.



The APS has a publicly available report on this topic, which goes into some of the physics. There are passive and active methods. Active means that you do something to the material in order to test it, as opposed to just trying to detect the radiation that it's putting out. Re passive detection of HEU:




Currently, passive detection is accomplished primarily by observation of either neutrons and/or photons emitted by spontaneous fission and by photons emitted in radioactive decay and neutron capture. Highly-enriched uranium (HEU) emits a number of relatively intense low-energy gamma rays that are largely absorbed by the material itself and are easily absorbed by most surrounding materials. The more penetrating photons emitted are of low abundance. If the HEU contains reactor-irradiated material, significant contamination by 232U can be found that may be detected through the emission of the 2615-keV gamma ray in the decay of 208Tl. Emission of neutrons from highly enriched uranium (HEU) is quite weak because of the low rate of spontaneous fission.




There are active methods of detection, but they involve radiation that you can't expose people to.






share|cite|improve this answer











$endgroup$









  • 2




    $begingroup$
    There are various active tools for detecting concentrations of fissile materials in containers around these days. They are not generally good for biological systems, however, so you have to take the suitcase away from it's owner or scan a shipping container for human cargo before you run the tests.
    $endgroup$
    – dmckee
    2 hours ago












  • $begingroup$
    @dmckee If a guy had a W-80 in the trunk of his car, does any technology exist that could find him as he drove down the highway? Just trying not to sound like an idiot for the sake of my novel.
    $endgroup$
    – birdus
    2 hours ago








  • 2




    $begingroup$
    @birdus All the techniques I know of (x- and gamma-ray back scatter, neutron fluorescence, etc..) would imposes a non-trivial ionizing radiation dose on every person driving down the road. This stuff saw a huge jump in funding starting in 2002, but it's not a easy problem and the "working" systems all have a problem with false positives. They count on being able to re-scan more slowly when the big red light turns on to sort out real event from statistical fluctuations (which cause essentially all the positive results).
    $endgroup$
    – dmckee
    2 hours ago
















7












7








7





$begingroup$

No. It's not even possible to detect one that's inside a suitcase or a shipping container. There's a famous story about how a senator asked Oppenheimer in 1946 whether terrorists could blow up New York this way, or whether there was any tool that could detect the bomb when it was brought into the country. Oppenheimer famously replied, "a screwdriver" -- meaning that you would have to open the box to find out.



Although considerable effort has been dedicated since then to trying to improve detection techniques, highly enriched uranium (HEU) is particularly difficult to detect. It only emits alpha particles, and therefore all you have to do is wrap it in newspaper, and its radiation becomes undetectable.



The APS has a publicly available report on this topic, which goes into some of the physics. There are passive and active methods. Active means that you do something to the material in order to test it, as opposed to just trying to detect the radiation that it's putting out. Re passive detection of HEU:




Currently, passive detection is accomplished primarily by observation of either neutrons and/or photons emitted by spontaneous fission and by photons emitted in radioactive decay and neutron capture. Highly-enriched uranium (HEU) emits a number of relatively intense low-energy gamma rays that are largely absorbed by the material itself and are easily absorbed by most surrounding materials. The more penetrating photons emitted are of low abundance. If the HEU contains reactor-irradiated material, significant contamination by 232U can be found that may be detected through the emission of the 2615-keV gamma ray in the decay of 208Tl. Emission of neutrons from highly enriched uranium (HEU) is quite weak because of the low rate of spontaneous fission.




There are active methods of detection, but they involve radiation that you can't expose people to.






share|cite|improve this answer











$endgroup$



No. It's not even possible to detect one that's inside a suitcase or a shipping container. There's a famous story about how a senator asked Oppenheimer in 1946 whether terrorists could blow up New York this way, or whether there was any tool that could detect the bomb when it was brought into the country. Oppenheimer famously replied, "a screwdriver" -- meaning that you would have to open the box to find out.



Although considerable effort has been dedicated since then to trying to improve detection techniques, highly enriched uranium (HEU) is particularly difficult to detect. It only emits alpha particles, and therefore all you have to do is wrap it in newspaper, and its radiation becomes undetectable.



The APS has a publicly available report on this topic, which goes into some of the physics. There are passive and active methods. Active means that you do something to the material in order to test it, as opposed to just trying to detect the radiation that it's putting out. Re passive detection of HEU:




Currently, passive detection is accomplished primarily by observation of either neutrons and/or photons emitted by spontaneous fission and by photons emitted in radioactive decay and neutron capture. Highly-enriched uranium (HEU) emits a number of relatively intense low-energy gamma rays that are largely absorbed by the material itself and are easily absorbed by most surrounding materials. The more penetrating photons emitted are of low abundance. If the HEU contains reactor-irradiated material, significant contamination by 232U can be found that may be detected through the emission of the 2615-keV gamma ray in the decay of 208Tl. Emission of neutrons from highly enriched uranium (HEU) is quite weak because of the low rate of spontaneous fission.




There are active methods of detection, but they involve radiation that you can't expose people to.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 2 hours ago

























answered 2 hours ago









Ben CrowellBen Crowell

52.7k6162306




52.7k6162306








  • 2




    $begingroup$
    There are various active tools for detecting concentrations of fissile materials in containers around these days. They are not generally good for biological systems, however, so you have to take the suitcase away from it's owner or scan a shipping container for human cargo before you run the tests.
    $endgroup$
    – dmckee
    2 hours ago












  • $begingroup$
    @dmckee If a guy had a W-80 in the trunk of his car, does any technology exist that could find him as he drove down the highway? Just trying not to sound like an idiot for the sake of my novel.
    $endgroup$
    – birdus
    2 hours ago








  • 2




    $begingroup$
    @birdus All the techniques I know of (x- and gamma-ray back scatter, neutron fluorescence, etc..) would imposes a non-trivial ionizing radiation dose on every person driving down the road. This stuff saw a huge jump in funding starting in 2002, but it's not a easy problem and the "working" systems all have a problem with false positives. They count on being able to re-scan more slowly when the big red light turns on to sort out real event from statistical fluctuations (which cause essentially all the positive results).
    $endgroup$
    – dmckee
    2 hours ago
















  • 2




    $begingroup$
    There are various active tools for detecting concentrations of fissile materials in containers around these days. They are not generally good for biological systems, however, so you have to take the suitcase away from it's owner or scan a shipping container for human cargo before you run the tests.
    $endgroup$
    – dmckee
    2 hours ago












  • $begingroup$
    @dmckee If a guy had a W-80 in the trunk of his car, does any technology exist that could find him as he drove down the highway? Just trying not to sound like an idiot for the sake of my novel.
    $endgroup$
    – birdus
    2 hours ago








  • 2




    $begingroup$
    @birdus All the techniques I know of (x- and gamma-ray back scatter, neutron fluorescence, etc..) would imposes a non-trivial ionizing radiation dose on every person driving down the road. This stuff saw a huge jump in funding starting in 2002, but it's not a easy problem and the "working" systems all have a problem with false positives. They count on being able to re-scan more slowly when the big red light turns on to sort out real event from statistical fluctuations (which cause essentially all the positive results).
    $endgroup$
    – dmckee
    2 hours ago










2




2




$begingroup$
There are various active tools for detecting concentrations of fissile materials in containers around these days. They are not generally good for biological systems, however, so you have to take the suitcase away from it's owner or scan a shipping container for human cargo before you run the tests.
$endgroup$
– dmckee
2 hours ago






$begingroup$
There are various active tools for detecting concentrations of fissile materials in containers around these days. They are not generally good for biological systems, however, so you have to take the suitcase away from it's owner or scan a shipping container for human cargo before you run the tests.
$endgroup$
– dmckee
2 hours ago














$begingroup$
@dmckee If a guy had a W-80 in the trunk of his car, does any technology exist that could find him as he drove down the highway? Just trying not to sound like an idiot for the sake of my novel.
$endgroup$
– birdus
2 hours ago






$begingroup$
@dmckee If a guy had a W-80 in the trunk of his car, does any technology exist that could find him as he drove down the highway? Just trying not to sound like an idiot for the sake of my novel.
$endgroup$
– birdus
2 hours ago






2




2




$begingroup$
@birdus All the techniques I know of (x- and gamma-ray back scatter, neutron fluorescence, etc..) would imposes a non-trivial ionizing radiation dose on every person driving down the road. This stuff saw a huge jump in funding starting in 2002, but it's not a easy problem and the "working" systems all have a problem with false positives. They count on being able to re-scan more slowly when the big red light turns on to sort out real event from statistical fluctuations (which cause essentially all the positive results).
$endgroup$
– dmckee
2 hours ago






$begingroup$
@birdus All the techniques I know of (x- and gamma-ray back scatter, neutron fluorescence, etc..) would imposes a non-trivial ionizing radiation dose on every person driving down the road. This stuff saw a huge jump in funding starting in 2002, but it's not a easy problem and the "working" systems all have a problem with false positives. They count on being able to re-scan more slowly when the big red light turns on to sort out real event from statistical fluctuations (which cause essentially all the positive results).
$endgroup$
– dmckee
2 hours ago




















draft saved

draft discarded




















































Thanks for contributing an answer to Physics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f465777%2fpossible-to-detect-presence-of-nuclear-bomb%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

數位音樂下載

When can things happen in Etherscan, such as the picture below?

格利澤436b