Beta Andromedae (Mirach) and distances mentioned in original Cosmos series from 1980












1












$begingroup$


In one of the episodes from Carl Sagan's show Cosmos he explains that Beta Andromedae is the second brightest star in the constellation Andromeda, and is 75 light years away. The link to the video is here.



I've looked up this star on Wikipedia and it says it's the brightest star in the constellation, not the second brightest, and instead of 75 light years away it says it's about 197 light years away.



I know that this show Cosmos is quite old. It aired in 1980. I understand our measurements are more accurate nowadays, but I was just wondering if anyone knew why the discrepancy with the brightest and second brightest star claims, and also that the Wikipedia article says it's 197 light years away, a difference of about 260% from the 75 light years mentioned by Sagan. That's quite a significant difference.



His information of the distance from us to the center of our galaxy is quite close: he says 30 thousand light years; Wikipedia says 27 thousand light years. As to our distance to Andromeda, he says: 2 million light years; Wikipedia says 2.5 million light years.



Have I completely got the wrong star that I'm looking up?










share|improve this question









New contributor




Zebrafish is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$

















    1












    $begingroup$


    In one of the episodes from Carl Sagan's show Cosmos he explains that Beta Andromedae is the second brightest star in the constellation Andromeda, and is 75 light years away. The link to the video is here.



    I've looked up this star on Wikipedia and it says it's the brightest star in the constellation, not the second brightest, and instead of 75 light years away it says it's about 197 light years away.



    I know that this show Cosmos is quite old. It aired in 1980. I understand our measurements are more accurate nowadays, but I was just wondering if anyone knew why the discrepancy with the brightest and second brightest star claims, and also that the Wikipedia article says it's 197 light years away, a difference of about 260% from the 75 light years mentioned by Sagan. That's quite a significant difference.



    His information of the distance from us to the center of our galaxy is quite close: he says 30 thousand light years; Wikipedia says 27 thousand light years. As to our distance to Andromeda, he says: 2 million light years; Wikipedia says 2.5 million light years.



    Have I completely got the wrong star that I'm looking up?










    share|improve this question









    New contributor




    Zebrafish is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$















      1












      1








      1





      $begingroup$


      In one of the episodes from Carl Sagan's show Cosmos he explains that Beta Andromedae is the second brightest star in the constellation Andromeda, and is 75 light years away. The link to the video is here.



      I've looked up this star on Wikipedia and it says it's the brightest star in the constellation, not the second brightest, and instead of 75 light years away it says it's about 197 light years away.



      I know that this show Cosmos is quite old. It aired in 1980. I understand our measurements are more accurate nowadays, but I was just wondering if anyone knew why the discrepancy with the brightest and second brightest star claims, and also that the Wikipedia article says it's 197 light years away, a difference of about 260% from the 75 light years mentioned by Sagan. That's quite a significant difference.



      His information of the distance from us to the center of our galaxy is quite close: he says 30 thousand light years; Wikipedia says 27 thousand light years. As to our distance to Andromeda, he says: 2 million light years; Wikipedia says 2.5 million light years.



      Have I completely got the wrong star that I'm looking up?










      share|improve this question









      New contributor




      Zebrafish is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      In one of the episodes from Carl Sagan's show Cosmos he explains that Beta Andromedae is the second brightest star in the constellation Andromeda, and is 75 light years away. The link to the video is here.



      I've looked up this star on Wikipedia and it says it's the brightest star in the constellation, not the second brightest, and instead of 75 light years away it says it's about 197 light years away.



      I know that this show Cosmos is quite old. It aired in 1980. I understand our measurements are more accurate nowadays, but I was just wondering if anyone knew why the discrepancy with the brightest and second brightest star claims, and also that the Wikipedia article says it's 197 light years away, a difference of about 260% from the 75 light years mentioned by Sagan. That's quite a significant difference.



      His information of the distance from us to the center of our galaxy is quite close: he says 30 thousand light years; Wikipedia says 27 thousand light years. As to our distance to Andromeda, he says: 2 million light years; Wikipedia says 2.5 million light years.



      Have I completely got the wrong star that I'm looking up?







      star distances






      share|improve this question









      New contributor




      Zebrafish is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question









      New contributor




      Zebrafish is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question








      edited 5 hours ago









      Morrison Chang

      1333




      1333






      New contributor




      Zebrafish is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 6 hours ago









      ZebrafishZebrafish

      1064




      1064




      New contributor




      Zebrafish is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Zebrafish is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Zebrafish is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          3 Answers
          3






          active

          oldest

          votes


















          3












          $begingroup$

          I think I found the source of the 75 light year distance for Beta Andromeda as being from the 1978 edition of Burnham's Celestial Handbook



          From this excerpt out of Google Books




          Name - Mirach. Mag 2.03 ... The distance is about 75 light years according to parallaxes obtained at Mt. Wilson, Allegheny, and McCormick; the resulting luminosity is about 75 times that of the Sun, and the absolute magnitude about +0.2.




          Just reading the excerpt alone, I'm unclear if this is a misinterpretation of the results from the observatories or that at the time the understanding the characteristics of star type would result in the discrepancy.






          share|improve this answer








          New contributor




          Morrison Chang is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$





















            1












            $begingroup$

            Distances of stars measured by parallax in general (and red giants in particular) can be notoriously inexact, and the distance values can vary markedly between different measurements. For example, Betelgeuse has been measured as being 520±73 ly by the Hipparcos mission, and 643±146 ly by the Very Large Array.



            I often find distances to stars listed on wikipedia are different from what I remember them to be a decade ago.



            Mirach is a red giant star. It is entirely possible that the measurements may have changed considerably in that time.






            share|improve this answer









            $endgroup$













            • $begingroup$
              So you're saying the measurement of 75 light years was either an error or the best measurement we could get with the available tools at the time?
              $endgroup$
              – Zebrafish
              4 hours ago










            • $begingroup$
              I wouldn't quite say error, as in "the measurement is wrong', because they did use the word 'about'. It would've been a best guess with the tools and techniques available at the time, yes. Parallax measurements are relative to the distances to other objects, and the quality of the measurement depends on how well you know the distances to these other stars that are nearby to the star in the sky.
              $endgroup$
              – Ingolifs
              4 hours ago





















            0












            $begingroup$

            Looking at the SIMBAD data page for Beta Andromeda shows the source of both the parallax (distance) and the magnitudes. In this case, as it will be for many bright stars, the source of the parallax is the reprocessed data from the Hipparcos satellite, described in this paper. Prior to the launch of the Hipparcos satellite by ESA in 1989, parallaxes were very difficult to obtain and only low precision values were available for the closest stars.



            The parallax given in SIMBAD for Beta Andromeda is $16.52pm0.56$ milliarcseconds which translates to a distance of $60.5pm2.1$ parsecs or $60.5times3.26=197$ light years. This small parallax would have been extremely challenging or impossible to measure accurately with the pre-CCD technology before 1980. Errors of several hundred percent were not uncommon. The prior parallax measurement which probably was an improvement on what was available in 1980 at the time of Cosmos is from van Altena et al. 1995. This lists a parallax of $47.7pm7.9$ millarcsec, a nearly 5x larger error and which gives a distance of 68 light years.



            Similarly we can see that the $V$-band magnitude comes from this collection and the difference between Beta Andromeda ($V=2.05$) and Alpha Andromeda ($V=2.06$), the in-theory brightest star in the constellation is only 0.01 magnitude. Measuring a star that bright to that precision was, and in fact still is, quite difficult as most detectors will saturate. So it's not particularly surprising given how close Alpha and Beta Andromeda are in brightness, that the early measurements got them reversed when Beta is in fact (very slightly) brighter.



            This high brightness probably means that we will not see a more accurate from the Gaia satellite, the successor to Hipparcos. The Gaia DR2 data release lists a brightness limit of $Gsim3$ which may be improved slightly in later data releases with more sophisticated data processing and treatment of saturated stars.






            share|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "514"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });






              Zebrafish is a new contributor. Be nice, and check out our Code of Conduct.










              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fastronomy.stackexchange.com%2fquestions%2f29555%2fbeta-andromedae-mirach-and-distances-mentioned-in-original-cosmos-series-from%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              I think I found the source of the 75 light year distance for Beta Andromeda as being from the 1978 edition of Burnham's Celestial Handbook



              From this excerpt out of Google Books




              Name - Mirach. Mag 2.03 ... The distance is about 75 light years according to parallaxes obtained at Mt. Wilson, Allegheny, and McCormick; the resulting luminosity is about 75 times that of the Sun, and the absolute magnitude about +0.2.




              Just reading the excerpt alone, I'm unclear if this is a misinterpretation of the results from the observatories or that at the time the understanding the characteristics of star type would result in the discrepancy.






              share|improve this answer








              New contributor




              Morrison Chang is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
              Check out our Code of Conduct.






              $endgroup$


















                3












                $begingroup$

                I think I found the source of the 75 light year distance for Beta Andromeda as being from the 1978 edition of Burnham's Celestial Handbook



                From this excerpt out of Google Books




                Name - Mirach. Mag 2.03 ... The distance is about 75 light years according to parallaxes obtained at Mt. Wilson, Allegheny, and McCormick; the resulting luminosity is about 75 times that of the Sun, and the absolute magnitude about +0.2.




                Just reading the excerpt alone, I'm unclear if this is a misinterpretation of the results from the observatories or that at the time the understanding the characteristics of star type would result in the discrepancy.






                share|improve this answer








                New contributor




                Morrison Chang is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.






                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  I think I found the source of the 75 light year distance for Beta Andromeda as being from the 1978 edition of Burnham's Celestial Handbook



                  From this excerpt out of Google Books




                  Name - Mirach. Mag 2.03 ... The distance is about 75 light years according to parallaxes obtained at Mt. Wilson, Allegheny, and McCormick; the resulting luminosity is about 75 times that of the Sun, and the absolute magnitude about +0.2.




                  Just reading the excerpt alone, I'm unclear if this is a misinterpretation of the results from the observatories or that at the time the understanding the characteristics of star type would result in the discrepancy.






                  share|improve this answer








                  New contributor




                  Morrison Chang is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.






                  $endgroup$



                  I think I found the source of the 75 light year distance for Beta Andromeda as being from the 1978 edition of Burnham's Celestial Handbook



                  From this excerpt out of Google Books




                  Name - Mirach. Mag 2.03 ... The distance is about 75 light years according to parallaxes obtained at Mt. Wilson, Allegheny, and McCormick; the resulting luminosity is about 75 times that of the Sun, and the absolute magnitude about +0.2.




                  Just reading the excerpt alone, I'm unclear if this is a misinterpretation of the results from the observatories or that at the time the understanding the characteristics of star type would result in the discrepancy.







                  share|improve this answer








                  New contributor




                  Morrison Chang is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.









                  share|improve this answer



                  share|improve this answer






                  New contributor




                  Morrison Chang is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.









                  answered 6 hours ago









                  Morrison ChangMorrison Chang

                  1333




                  1333




                  New contributor




                  Morrison Chang is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.





                  New contributor





                  Morrison Chang is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.






                  Morrison Chang is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.























                      1












                      $begingroup$

                      Distances of stars measured by parallax in general (and red giants in particular) can be notoriously inexact, and the distance values can vary markedly between different measurements. For example, Betelgeuse has been measured as being 520±73 ly by the Hipparcos mission, and 643±146 ly by the Very Large Array.



                      I often find distances to stars listed on wikipedia are different from what I remember them to be a decade ago.



                      Mirach is a red giant star. It is entirely possible that the measurements may have changed considerably in that time.






                      share|improve this answer









                      $endgroup$













                      • $begingroup$
                        So you're saying the measurement of 75 light years was either an error or the best measurement we could get with the available tools at the time?
                        $endgroup$
                        – Zebrafish
                        4 hours ago










                      • $begingroup$
                        I wouldn't quite say error, as in "the measurement is wrong', because they did use the word 'about'. It would've been a best guess with the tools and techniques available at the time, yes. Parallax measurements are relative to the distances to other objects, and the quality of the measurement depends on how well you know the distances to these other stars that are nearby to the star in the sky.
                        $endgroup$
                        – Ingolifs
                        4 hours ago


















                      1












                      $begingroup$

                      Distances of stars measured by parallax in general (and red giants in particular) can be notoriously inexact, and the distance values can vary markedly between different measurements. For example, Betelgeuse has been measured as being 520±73 ly by the Hipparcos mission, and 643±146 ly by the Very Large Array.



                      I often find distances to stars listed on wikipedia are different from what I remember them to be a decade ago.



                      Mirach is a red giant star. It is entirely possible that the measurements may have changed considerably in that time.






                      share|improve this answer









                      $endgroup$













                      • $begingroup$
                        So you're saying the measurement of 75 light years was either an error or the best measurement we could get with the available tools at the time?
                        $endgroup$
                        – Zebrafish
                        4 hours ago










                      • $begingroup$
                        I wouldn't quite say error, as in "the measurement is wrong', because they did use the word 'about'. It would've been a best guess with the tools and techniques available at the time, yes. Parallax measurements are relative to the distances to other objects, and the quality of the measurement depends on how well you know the distances to these other stars that are nearby to the star in the sky.
                        $endgroup$
                        – Ingolifs
                        4 hours ago
















                      1












                      1








                      1





                      $begingroup$

                      Distances of stars measured by parallax in general (and red giants in particular) can be notoriously inexact, and the distance values can vary markedly between different measurements. For example, Betelgeuse has been measured as being 520±73 ly by the Hipparcos mission, and 643±146 ly by the Very Large Array.



                      I often find distances to stars listed on wikipedia are different from what I remember them to be a decade ago.



                      Mirach is a red giant star. It is entirely possible that the measurements may have changed considerably in that time.






                      share|improve this answer









                      $endgroup$



                      Distances of stars measured by parallax in general (and red giants in particular) can be notoriously inexact, and the distance values can vary markedly between different measurements. For example, Betelgeuse has been measured as being 520±73 ly by the Hipparcos mission, and 643±146 ly by the Very Large Array.



                      I often find distances to stars listed on wikipedia are different from what I remember them to be a decade ago.



                      Mirach is a red giant star. It is entirely possible that the measurements may have changed considerably in that time.







                      share|improve this answer












                      share|improve this answer



                      share|improve this answer










                      answered 4 hours ago









                      IngolifsIngolifs

                      1,068515




                      1,068515












                      • $begingroup$
                        So you're saying the measurement of 75 light years was either an error or the best measurement we could get with the available tools at the time?
                        $endgroup$
                        – Zebrafish
                        4 hours ago










                      • $begingroup$
                        I wouldn't quite say error, as in "the measurement is wrong', because they did use the word 'about'. It would've been a best guess with the tools and techniques available at the time, yes. Parallax measurements are relative to the distances to other objects, and the quality of the measurement depends on how well you know the distances to these other stars that are nearby to the star in the sky.
                        $endgroup$
                        – Ingolifs
                        4 hours ago




















                      • $begingroup$
                        So you're saying the measurement of 75 light years was either an error or the best measurement we could get with the available tools at the time?
                        $endgroup$
                        – Zebrafish
                        4 hours ago










                      • $begingroup$
                        I wouldn't quite say error, as in "the measurement is wrong', because they did use the word 'about'. It would've been a best guess with the tools and techniques available at the time, yes. Parallax measurements are relative to the distances to other objects, and the quality of the measurement depends on how well you know the distances to these other stars that are nearby to the star in the sky.
                        $endgroup$
                        – Ingolifs
                        4 hours ago


















                      $begingroup$
                      So you're saying the measurement of 75 light years was either an error or the best measurement we could get with the available tools at the time?
                      $endgroup$
                      – Zebrafish
                      4 hours ago




                      $begingroup$
                      So you're saying the measurement of 75 light years was either an error or the best measurement we could get with the available tools at the time?
                      $endgroup$
                      – Zebrafish
                      4 hours ago












                      $begingroup$
                      I wouldn't quite say error, as in "the measurement is wrong', because they did use the word 'about'. It would've been a best guess with the tools and techniques available at the time, yes. Parallax measurements are relative to the distances to other objects, and the quality of the measurement depends on how well you know the distances to these other stars that are nearby to the star in the sky.
                      $endgroup$
                      – Ingolifs
                      4 hours ago






                      $begingroup$
                      I wouldn't quite say error, as in "the measurement is wrong', because they did use the word 'about'. It would've been a best guess with the tools and techniques available at the time, yes. Parallax measurements are relative to the distances to other objects, and the quality of the measurement depends on how well you know the distances to these other stars that are nearby to the star in the sky.
                      $endgroup$
                      – Ingolifs
                      4 hours ago













                      0












                      $begingroup$

                      Looking at the SIMBAD data page for Beta Andromeda shows the source of both the parallax (distance) and the magnitudes. In this case, as it will be for many bright stars, the source of the parallax is the reprocessed data from the Hipparcos satellite, described in this paper. Prior to the launch of the Hipparcos satellite by ESA in 1989, parallaxes were very difficult to obtain and only low precision values were available for the closest stars.



                      The parallax given in SIMBAD for Beta Andromeda is $16.52pm0.56$ milliarcseconds which translates to a distance of $60.5pm2.1$ parsecs or $60.5times3.26=197$ light years. This small parallax would have been extremely challenging or impossible to measure accurately with the pre-CCD technology before 1980. Errors of several hundred percent were not uncommon. The prior parallax measurement which probably was an improvement on what was available in 1980 at the time of Cosmos is from van Altena et al. 1995. This lists a parallax of $47.7pm7.9$ millarcsec, a nearly 5x larger error and which gives a distance of 68 light years.



                      Similarly we can see that the $V$-band magnitude comes from this collection and the difference between Beta Andromeda ($V=2.05$) and Alpha Andromeda ($V=2.06$), the in-theory brightest star in the constellation is only 0.01 magnitude. Measuring a star that bright to that precision was, and in fact still is, quite difficult as most detectors will saturate. So it's not particularly surprising given how close Alpha and Beta Andromeda are in brightness, that the early measurements got them reversed when Beta is in fact (very slightly) brighter.



                      This high brightness probably means that we will not see a more accurate from the Gaia satellite, the successor to Hipparcos. The Gaia DR2 data release lists a brightness limit of $Gsim3$ which may be improved slightly in later data releases with more sophisticated data processing and treatment of saturated stars.






                      share|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        Looking at the SIMBAD data page for Beta Andromeda shows the source of both the parallax (distance) and the magnitudes. In this case, as it will be for many bright stars, the source of the parallax is the reprocessed data from the Hipparcos satellite, described in this paper. Prior to the launch of the Hipparcos satellite by ESA in 1989, parallaxes were very difficult to obtain and only low precision values were available for the closest stars.



                        The parallax given in SIMBAD for Beta Andromeda is $16.52pm0.56$ milliarcseconds which translates to a distance of $60.5pm2.1$ parsecs or $60.5times3.26=197$ light years. This small parallax would have been extremely challenging or impossible to measure accurately with the pre-CCD technology before 1980. Errors of several hundred percent were not uncommon. The prior parallax measurement which probably was an improvement on what was available in 1980 at the time of Cosmos is from van Altena et al. 1995. This lists a parallax of $47.7pm7.9$ millarcsec, a nearly 5x larger error and which gives a distance of 68 light years.



                        Similarly we can see that the $V$-band magnitude comes from this collection and the difference between Beta Andromeda ($V=2.05$) and Alpha Andromeda ($V=2.06$), the in-theory brightest star in the constellation is only 0.01 magnitude. Measuring a star that bright to that precision was, and in fact still is, quite difficult as most detectors will saturate. So it's not particularly surprising given how close Alpha and Beta Andromeda are in brightness, that the early measurements got them reversed when Beta is in fact (very slightly) brighter.



                        This high brightness probably means that we will not see a more accurate from the Gaia satellite, the successor to Hipparcos. The Gaia DR2 data release lists a brightness limit of $Gsim3$ which may be improved slightly in later data releases with more sophisticated data processing and treatment of saturated stars.






                        share|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          Looking at the SIMBAD data page for Beta Andromeda shows the source of both the parallax (distance) and the magnitudes. In this case, as it will be for many bright stars, the source of the parallax is the reprocessed data from the Hipparcos satellite, described in this paper. Prior to the launch of the Hipparcos satellite by ESA in 1989, parallaxes were very difficult to obtain and only low precision values were available for the closest stars.



                          The parallax given in SIMBAD for Beta Andromeda is $16.52pm0.56$ milliarcseconds which translates to a distance of $60.5pm2.1$ parsecs or $60.5times3.26=197$ light years. This small parallax would have been extremely challenging or impossible to measure accurately with the pre-CCD technology before 1980. Errors of several hundred percent were not uncommon. The prior parallax measurement which probably was an improvement on what was available in 1980 at the time of Cosmos is from van Altena et al. 1995. This lists a parallax of $47.7pm7.9$ millarcsec, a nearly 5x larger error and which gives a distance of 68 light years.



                          Similarly we can see that the $V$-band magnitude comes from this collection and the difference between Beta Andromeda ($V=2.05$) and Alpha Andromeda ($V=2.06$), the in-theory brightest star in the constellation is only 0.01 magnitude. Measuring a star that bright to that precision was, and in fact still is, quite difficult as most detectors will saturate. So it's not particularly surprising given how close Alpha and Beta Andromeda are in brightness, that the early measurements got them reversed when Beta is in fact (very slightly) brighter.



                          This high brightness probably means that we will not see a more accurate from the Gaia satellite, the successor to Hipparcos. The Gaia DR2 data release lists a brightness limit of $Gsim3$ which may be improved slightly in later data releases with more sophisticated data processing and treatment of saturated stars.






                          share|improve this answer









                          $endgroup$



                          Looking at the SIMBAD data page for Beta Andromeda shows the source of both the parallax (distance) and the magnitudes. In this case, as it will be for many bright stars, the source of the parallax is the reprocessed data from the Hipparcos satellite, described in this paper. Prior to the launch of the Hipparcos satellite by ESA in 1989, parallaxes were very difficult to obtain and only low precision values were available for the closest stars.



                          The parallax given in SIMBAD for Beta Andromeda is $16.52pm0.56$ milliarcseconds which translates to a distance of $60.5pm2.1$ parsecs or $60.5times3.26=197$ light years. This small parallax would have been extremely challenging or impossible to measure accurately with the pre-CCD technology before 1980. Errors of several hundred percent were not uncommon. The prior parallax measurement which probably was an improvement on what was available in 1980 at the time of Cosmos is from van Altena et al. 1995. This lists a parallax of $47.7pm7.9$ millarcsec, a nearly 5x larger error and which gives a distance of 68 light years.



                          Similarly we can see that the $V$-band magnitude comes from this collection and the difference between Beta Andromeda ($V=2.05$) and Alpha Andromeda ($V=2.06$), the in-theory brightest star in the constellation is only 0.01 magnitude. Measuring a star that bright to that precision was, and in fact still is, quite difficult as most detectors will saturate. So it's not particularly surprising given how close Alpha and Beta Andromeda are in brightness, that the early measurements got them reversed when Beta is in fact (very slightly) brighter.



                          This high brightness probably means that we will not see a more accurate from the Gaia satellite, the successor to Hipparcos. The Gaia DR2 data release lists a brightness limit of $Gsim3$ which may be improved slightly in later data releases with more sophisticated data processing and treatment of saturated stars.







                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered 2 hours ago









                          astrosnapperastrosnapper

                          2,582522




                          2,582522






















                              Zebrafish is a new contributor. Be nice, and check out our Code of Conduct.










                              draft saved

                              draft discarded


















                              Zebrafish is a new contributor. Be nice, and check out our Code of Conduct.













                              Zebrafish is a new contributor. Be nice, and check out our Code of Conduct.












                              Zebrafish is a new contributor. Be nice, and check out our Code of Conduct.
















                              Thanks for contributing an answer to Astronomy Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fastronomy.stackexchange.com%2fquestions%2f29555%2fbeta-andromedae-mirach-and-distances-mentioned-in-original-cosmos-series-from%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              數位音樂下載

                              When can things happen in Etherscan, such as the picture below?

                              格利澤436b