How to format a long polynomial
I have a long polynomial:
documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
$ f(z)=frac{1}{382112640}(-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028\
079eta^3+347370177721463765064153eta)/((417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001))$
end{document}
How do I format such a long polynomial correctly?
math-mode
add a comment |
I have a long polynomial:
documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
$ f(z)=frac{1}{382112640}(-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028\
079eta^3+347370177721463765064153eta)/((417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001))$
end{document}
How do I format such a long polynomial correctly?
math-mode
5
For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_{i,j}$ and then adding a table to show the values.
– Mefitico
2 days ago
1
@Mefitico It is a nice option! Why don't you post an answer?
– JouleV
2 days ago
1
@JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!"
– Mefitico
2 days ago
@Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression.
– JouleV
2 days ago
add a comment |
I have a long polynomial:
documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
$ f(z)=frac{1}{382112640}(-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028\
079eta^3+347370177721463765064153eta)/((417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001))$
end{document}
How do I format such a long polynomial correctly?
math-mode
I have a long polynomial:
documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
$ f(z)=frac{1}{382112640}(-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028\
079eta^3+347370177721463765064153eta)/((417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001))$
end{document}
How do I format such a long polynomial correctly?
math-mode
math-mode
edited 16 hours ago
Peter Mortensen
54837
54837
asked 2 days ago
NickNick
1987
1987
5
For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_{i,j}$ and then adding a table to show the values.
– Mefitico
2 days ago
1
@Mefitico It is a nice option! Why don't you post an answer?
– JouleV
2 days ago
1
@JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!"
– Mefitico
2 days ago
@Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression.
– JouleV
2 days ago
add a comment |
5
For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_{i,j}$ and then adding a table to show the values.
– Mefitico
2 days ago
1
@Mefitico It is a nice option! Why don't you post an answer?
– JouleV
2 days ago
1
@JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!"
– Mefitico
2 days ago
@Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression.
– JouleV
2 days ago
5
5
For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_{i,j}$ and then adding a table to show the values.
– Mefitico
2 days ago
For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_{i,j}$ and then adding a table to show the values.
– Mefitico
2 days ago
1
1
@Mefitico It is a nice option! Why don't you post an answer?
– JouleV
2 days ago
@Mefitico It is a nice option! Why don't you post an answer?
– JouleV
2 days ago
1
1
@JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!"
– Mefitico
2 days ago
@JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!"
– Mefitico
2 days ago
@Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression.
– JouleV
2 days ago
@Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression.
– JouleV
2 days ago
add a comment |
7 Answers
7
active
oldest
votes
I would use something like this
documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
Blah blah
[f(z)=frac{1}{382112640}cdotfrac{A}{B}]
where
begin{align*}
A=&,-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4\
&,-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3\
&,+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2\
&,-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2\
&,+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z\
&,-317254092617698017425280eta^5z-443761561344388063474665eta^4z\
&,+82327155732241730770824eta z-514623285385260545505123eta^2z\
&,-1010535343560043404912120eta^2-357788302700438191196160eta^5\
&,-43808044579418934376632-214023244873618345872240eta^4\
&,+11818373349781028079eta^3+347370177721463765064153eta
end{align*}
and
[B=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)]
end{document}
1
you could format this even more compactly by using matrix multiplication to expressA
– Tasos Papastylianou
2 days ago
add a comment |
I suggest something line the following, so the wide terms are reduced.
documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
begin{gather*}
begin{align*}
g(eta,z)&=
parbox[t]{0.85displaywidth}{raggedright
$-306772802511648469920eta^4z^4+
762453974480763801600eta^5z^4-
1678626210368271790080eta^5z^3-
28510918043555533736160eta^4z^3+
11443138641451067779872eta^3z^3-
52164076923190540413504eta^2z^2-
78145258181161076156160eta^5z^2-
211306163712129371808450eta^4z^2+
228927087397104405937944eta^3z^2+
999881065017543109136462eta^3z-
317254092617698017425280eta^5z-
443761561344388063474665eta^4z+
82327155732241730770824eta z-
514623285385260545505123eta^2z-
1010535343560043404912120eta^2-
357788302700438191196160eta^5-
43808044579418934376632-
214023244873618345872240eta^4+
11818373349781028079eta^3+
347370177721463765064153eta$
}
\[2ex]
h(z)&=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
end{align*}
\[2ex]
f(z)=frac{1}{382112640}frac{g(eta,z)}{h(z)}
end{gather*}
end{document}
your answer is OK, but some terms are out of pages margins.
– Nick
2 days ago
7
@Nick Without knowing the line width you're using it's difficult to say more.
– egreg
2 days ago
@Nick egreg's answer uses default margin ofarticle
, which is already really big. But it doesn't fit your margin?
– JouleV
2 days ago
I have moved the signs "-, +" from lines end and put them under sign "=".
– Nick
2 days ago
add a comment |
or
documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools, nccmath}
begin{document}
begin{multline*}medmath
f(z)=frac{1}{382112640}
frac{left[
begin{multlined}
-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-\
1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+\
11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-\
78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+\
228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-\
317254092617698017425280eta^5z-443761561344388063474665eta^4z+\
82327155732241730770824eta z - 514623285385260545505123eta^2z-\
1010535343560043404912120eta^2-357788302700438191196160eta^5-\
43808044579418934376632-214023244873618345872240eta^4+\
11818373349781028079eta^3+347370177721463765064153eta
end{multlined}right]}
{(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
end{multline*}
add a comment |
Given the nature of the operations, you can probably express this in a tidy manner using matrix multiplication notation, eg:
where:
Code:
$$ f(z)=frac{1}{382,112,640} ; frac{g(eta, z)}{u(z) , v(z) , w(z) } $$
where
$$
begin{array}{ll}
g(eta, z) =
begin{bmatrix}
begin{array}{r @{hspace{0em}} r}
- & 306,772,802,511,648,469,920 \
& 762,453,974,480,763,801,600 \
- & 1,678,626,210,368,271,790,080 \
- & 28,510,918,043,555,533,736,160 \
& 11,443,138,641,451,067,779,872 \
- & 52,164,076,923,190,540,413,504 \
- & 78,145,258,181,161,076,156,160 \
- & 211,306,163,712,129,371,808,450 \
& 228,927,087,397,104,405,937,944 \
& 999,881,065,017,543,109,136,462 \
- & 317,254,092,617,698,017,425,280 \
- & 443,761,561,344,388,063,474,665 \
& 82,327,155,732,241,730,770,824 \
- & 514,623,285,385,260,545,505,123 \
- & 1,010,535,343,560,043,404,912,120 \
- & 357,788,302,700,438,191,196,160 \
- & 43,808,044,579,418,934,376,632 \
- & 214,023,244,873,618,345,872,240 \
& 11,818,373,349,781,028,079 \
& 347,370,177,721,463,765,064,153
end{array}
end{bmatrix}^T
begin{bmatrix}
begin{array}{l}
eta^4z^4 \
eta^5z^4 \
eta^5z^3 \
eta^4z^3 \
eta^3z^3 \
eta^2z^2 \
eta^5z^2 \
eta^4z^2 \
eta^3z^2 \
eta^3z \
eta^5z \
eta^4z \
eta z \
eta^2z \
eta^2 \
eta^5 \
1 \
eta^4 \
eta^3 \
eta
end{array}
end{bmatrix}
&
begin{array}{l}
u(z) = begin{bmatrix} begin{array}{r @{hspace{0em}} r} & 417,420 \ - & 4,169,121 \ - & 15,571,312 end{array}end{bmatrix}^T begin{bmatrix} begin{array}{l} z^2 \ z \ 1 end{array}end{bmatrix}\[3em]
v(z) = begin{bmatrix} begin{array}{r @{hspace{0em}} r} & 1,546 \ & 3,537 end{array}end{bmatrix}^T begin{bmatrix}begin{array}{l} z \ 1 end{array}end{bmatrix}\[3em]
w(z) = begin{bmatrix}begin{array}{r @{hspace{0em}} r} & 3,092 \ & 17,001 end{array}end{bmatrix}^T begin{bmatrix}begin{array}{l} z \ 1 end{array}end{bmatrix} \[3em]
end{array}
end{array}
$$
PS. Having said that, given the nature of the numbers involved, I would also agree with Mefitico's point of view in the comments, i.e. it's best to create a variable with indices and express via a cleaner expression, and then refer to a table mapping those indices to the actual numbers involved.
1
The round brackets in the definitions of $u$, $v$ and $w$ seem superfluous.
– jochen
yesterday
1
From the point of view of someone wishing or needing to use such a polynomial, it would be helpful to insert breaks in all the long numbers to ease readability.
– JeremyC
22 hours ago
@jochen thanks, updated
– Tasos Papastylianou
10 hours ago
@JeremyC thanks, updated. I went for comma delimiters rather than breaks, as that might have been misleading in the context of matrix notation.
– Tasos Papastylianou
10 hours ago
add a comment |
I recommend aligning the variables and adding some form of thousand-separators, both will enhance the readability. What I also recommend (but didn't do here) is sorting by the powers of the first and then the second variable. This is a modification of JuleV's answer.
documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
Blah blah
[f(z)=frac{1}{382112640}cdotfrac{A}{B}]
where
[
arraycolsep=0.5pt
begin{array}{rrllrll}
A=&, -306,772,802,511,648,469,920 &eta^4 &z^4 & +762,453,974,480,763,801,600 &eta^5 &z^4\
&, -1,678,626,210,368,271,790,080 &eta^5 &z^3 & -2,8510,918,043,555,533,736,160 &eta^4 &z^3\
&, +11,443,138,641,451,067,779,872 &eta^3 &z^3 & -5,2164,076,923,190,540,413,504 &eta^2 &z^2\
&, -78,145,258,181,161,076,156,160 &eta^5 &z^2 & -21,1306,163,712,129,371,808,450 &eta^4 &z^2\
&, +228,927,087,397,104,405,937,944 &eta^3 &z^2 & +99,9881,065,017,543,109,136,462 &eta^3 &z\
&, -317,254,092,617,698,017,425,280 &eta^5 &z & -44,3761,561,344,388,063,474,665 &eta^4 &z\
&, +82,327,155,732,241,730,770,824 &eta &z & -51,4623,285,385,260,545,505,123 &eta^2 &z\
&,-1,010,535,343,560,043,404,912,120 &eta^2 & & -35,7788,302,700,438,191,196,160 &eta^5 &\
&, -43,808,044,579,418,934,376,632 & & & -21,4023,244,873,618,345,872,240 &eta^4 &\
&, +11,818,373,349,781,028,079 &eta^3 & & +34,7370,177,721,463,765,064,153 &eta &
end{array}
]
and
[B=(417,420z^2-4,169,121z-15,571,312)(1,546z+3,537)(3,092z+17,001)]
end{document}
I'm sure there are also some custom packages that can do this for you but this is just using the packages you provided:
add a comment |
I would usually use the package breqn
. That automatically line-breaks equations, and has a lot of very nice features, but uses low-level having into the maths primitives, which means it tends to make a mess of other packages what do the same thing (for example, you can't use both breqn
and sansmath
in the same document)
begin{dmath*}
f(z)=frac{1}{382112640}times-306772802511648469920eta^4z^4+left(762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028079eta^3+347370177721463765064153etaright)timesleft(left(417420z^2-4169121z-15571312right)left(1546z+3537right)left(3092z+17001right)right)^{-1}
end{dmath*}
which produces
IMO the right-alignment is ugly but apparently that's the AMS standard - without the brackets it left aligns all those lines like the alginat
version.
add a comment |
Following the original disposition of the function, but using alignat
, parenthesis, and fractions to emphasize its different terms.
documentclass{article}
usepackage{mathtools}
begin{document}
begin{alignat*}{2}
& f(z) && = frac{1}{382112640} times left( vphantom{frac{1}{382112640}} -306772802511648469920 eta^4 z^4 + 762453974480763801600 eta^5 z^4 right. \[1.5ex]
& && -1678626210368271790080 eta^5 z^3 -28510918043555533736160 eta^4 z^3 \[1.5ex]
& && +11443138641451067779872 eta^3 z^3 -52164076923190540413504 eta^2 z^2 \[1.5ex]
& && -78145258181161076156160 eta^5 z^2 -211306163712129371808450 eta^4 z^2 \[1.5ex]
& && +228927087397104405937944 eta^3 z^2 +999881065017543109136462 eta^3 z \[1.5ex]
& && -317254092617698017425280 eta^5 z -443761561344388063474665 eta^4 z \[1.5ex]
& && +82327155732241730770824 eta z -514623285385260545505123 eta^2 z \[1.5ex]
& && -1010535343560043404912120 eta^2 -357788302700438191196160 eta^5 \[1.5ex]
& && -43808044579418934376632 -214023244873618345872240 eta^4 \[1.5ex]
& && +11818373349781028079 eta^3 +347370177721463765064153eta left. vphantom{frac{1}{382112640}} right) \[1.5ex]
& && times frac{1}{(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
end{alignat*}
end{document}
Do you think this fits the page margin?
– JouleV
2 days ago
It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.
– Andre
2 days ago
In the original question, the term 417420z^2-4169121z-15571312 is in denominator, not in the numerator as you place it.
– quark67
yesterday
OK. I will revise this.
– Andre
18 hours ago
Revised the members of the last fraction. Also added a line for the last term (which also ensures that the display will fit the margins).
– Andre
16 hours ago
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "85"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f483300%2fhow-to-format-a-long-polynomial%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
7 Answers
7
active
oldest
votes
7 Answers
7
active
oldest
votes
active
oldest
votes
active
oldest
votes
I would use something like this
documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
Blah blah
[f(z)=frac{1}{382112640}cdotfrac{A}{B}]
where
begin{align*}
A=&,-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4\
&,-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3\
&,+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2\
&,-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2\
&,+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z\
&,-317254092617698017425280eta^5z-443761561344388063474665eta^4z\
&,+82327155732241730770824eta z-514623285385260545505123eta^2z\
&,-1010535343560043404912120eta^2-357788302700438191196160eta^5\
&,-43808044579418934376632-214023244873618345872240eta^4\
&,+11818373349781028079eta^3+347370177721463765064153eta
end{align*}
and
[B=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)]
end{document}
1
you could format this even more compactly by using matrix multiplication to expressA
– Tasos Papastylianou
2 days ago
add a comment |
I would use something like this
documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
Blah blah
[f(z)=frac{1}{382112640}cdotfrac{A}{B}]
where
begin{align*}
A=&,-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4\
&,-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3\
&,+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2\
&,-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2\
&,+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z\
&,-317254092617698017425280eta^5z-443761561344388063474665eta^4z\
&,+82327155732241730770824eta z-514623285385260545505123eta^2z\
&,-1010535343560043404912120eta^2-357788302700438191196160eta^5\
&,-43808044579418934376632-214023244873618345872240eta^4\
&,+11818373349781028079eta^3+347370177721463765064153eta
end{align*}
and
[B=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)]
end{document}
1
you could format this even more compactly by using matrix multiplication to expressA
– Tasos Papastylianou
2 days ago
add a comment |
I would use something like this
documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
Blah blah
[f(z)=frac{1}{382112640}cdotfrac{A}{B}]
where
begin{align*}
A=&,-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4\
&,-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3\
&,+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2\
&,-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2\
&,+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z\
&,-317254092617698017425280eta^5z-443761561344388063474665eta^4z\
&,+82327155732241730770824eta z-514623285385260545505123eta^2z\
&,-1010535343560043404912120eta^2-357788302700438191196160eta^5\
&,-43808044579418934376632-214023244873618345872240eta^4\
&,+11818373349781028079eta^3+347370177721463765064153eta
end{align*}
and
[B=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)]
end{document}
I would use something like this
documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
Blah blah
[f(z)=frac{1}{382112640}cdotfrac{A}{B}]
where
begin{align*}
A=&,-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4\
&,-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3\
&,+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2\
&,-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2\
&,+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z\
&,-317254092617698017425280eta^5z-443761561344388063474665eta^4z\
&,+82327155732241730770824eta z-514623285385260545505123eta^2z\
&,-1010535343560043404912120eta^2-357788302700438191196160eta^5\
&,-43808044579418934376632-214023244873618345872240eta^4\
&,+11818373349781028079eta^3+347370177721463765064153eta
end{align*}
and
[B=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)]
end{document}
answered 2 days ago
JouleVJouleV
11.4k22561
11.4k22561
1
you could format this even more compactly by using matrix multiplication to expressA
– Tasos Papastylianou
2 days ago
add a comment |
1
you could format this even more compactly by using matrix multiplication to expressA
– Tasos Papastylianou
2 days ago
1
1
you could format this even more compactly by using matrix multiplication to express
A
– Tasos Papastylianou
2 days ago
you could format this even more compactly by using matrix multiplication to express
A
– Tasos Papastylianou
2 days ago
add a comment |
I suggest something line the following, so the wide terms are reduced.
documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
begin{gather*}
begin{align*}
g(eta,z)&=
parbox[t]{0.85displaywidth}{raggedright
$-306772802511648469920eta^4z^4+
762453974480763801600eta^5z^4-
1678626210368271790080eta^5z^3-
28510918043555533736160eta^4z^3+
11443138641451067779872eta^3z^3-
52164076923190540413504eta^2z^2-
78145258181161076156160eta^5z^2-
211306163712129371808450eta^4z^2+
228927087397104405937944eta^3z^2+
999881065017543109136462eta^3z-
317254092617698017425280eta^5z-
443761561344388063474665eta^4z+
82327155732241730770824eta z-
514623285385260545505123eta^2z-
1010535343560043404912120eta^2-
357788302700438191196160eta^5-
43808044579418934376632-
214023244873618345872240eta^4+
11818373349781028079eta^3+
347370177721463765064153eta$
}
\[2ex]
h(z)&=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
end{align*}
\[2ex]
f(z)=frac{1}{382112640}frac{g(eta,z)}{h(z)}
end{gather*}
end{document}
your answer is OK, but some terms are out of pages margins.
– Nick
2 days ago
7
@Nick Without knowing the line width you're using it's difficult to say more.
– egreg
2 days ago
@Nick egreg's answer uses default margin ofarticle
, which is already really big. But it doesn't fit your margin?
– JouleV
2 days ago
I have moved the signs "-, +" from lines end and put them under sign "=".
– Nick
2 days ago
add a comment |
I suggest something line the following, so the wide terms are reduced.
documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
begin{gather*}
begin{align*}
g(eta,z)&=
parbox[t]{0.85displaywidth}{raggedright
$-306772802511648469920eta^4z^4+
762453974480763801600eta^5z^4-
1678626210368271790080eta^5z^3-
28510918043555533736160eta^4z^3+
11443138641451067779872eta^3z^3-
52164076923190540413504eta^2z^2-
78145258181161076156160eta^5z^2-
211306163712129371808450eta^4z^2+
228927087397104405937944eta^3z^2+
999881065017543109136462eta^3z-
317254092617698017425280eta^5z-
443761561344388063474665eta^4z+
82327155732241730770824eta z-
514623285385260545505123eta^2z-
1010535343560043404912120eta^2-
357788302700438191196160eta^5-
43808044579418934376632-
214023244873618345872240eta^4+
11818373349781028079eta^3+
347370177721463765064153eta$
}
\[2ex]
h(z)&=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
end{align*}
\[2ex]
f(z)=frac{1}{382112640}frac{g(eta,z)}{h(z)}
end{gather*}
end{document}
your answer is OK, but some terms are out of pages margins.
– Nick
2 days ago
7
@Nick Without knowing the line width you're using it's difficult to say more.
– egreg
2 days ago
@Nick egreg's answer uses default margin ofarticle
, which is already really big. But it doesn't fit your margin?
– JouleV
2 days ago
I have moved the signs "-, +" from lines end and put them under sign "=".
– Nick
2 days ago
add a comment |
I suggest something line the following, so the wide terms are reduced.
documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
begin{gather*}
begin{align*}
g(eta,z)&=
parbox[t]{0.85displaywidth}{raggedright
$-306772802511648469920eta^4z^4+
762453974480763801600eta^5z^4-
1678626210368271790080eta^5z^3-
28510918043555533736160eta^4z^3+
11443138641451067779872eta^3z^3-
52164076923190540413504eta^2z^2-
78145258181161076156160eta^5z^2-
211306163712129371808450eta^4z^2+
228927087397104405937944eta^3z^2+
999881065017543109136462eta^3z-
317254092617698017425280eta^5z-
443761561344388063474665eta^4z+
82327155732241730770824eta z-
514623285385260545505123eta^2z-
1010535343560043404912120eta^2-
357788302700438191196160eta^5-
43808044579418934376632-
214023244873618345872240eta^4+
11818373349781028079eta^3+
347370177721463765064153eta$
}
\[2ex]
h(z)&=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
end{align*}
\[2ex]
f(z)=frac{1}{382112640}frac{g(eta,z)}{h(z)}
end{gather*}
end{document}
I suggest something line the following, so the wide terms are reduced.
documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
begin{gather*}
begin{align*}
g(eta,z)&=
parbox[t]{0.85displaywidth}{raggedright
$-306772802511648469920eta^4z^4+
762453974480763801600eta^5z^4-
1678626210368271790080eta^5z^3-
28510918043555533736160eta^4z^3+
11443138641451067779872eta^3z^3-
52164076923190540413504eta^2z^2-
78145258181161076156160eta^5z^2-
211306163712129371808450eta^4z^2+
228927087397104405937944eta^3z^2+
999881065017543109136462eta^3z-
317254092617698017425280eta^5z-
443761561344388063474665eta^4z+
82327155732241730770824eta z-
514623285385260545505123eta^2z-
1010535343560043404912120eta^2-
357788302700438191196160eta^5-
43808044579418934376632-
214023244873618345872240eta^4+
11818373349781028079eta^3+
347370177721463765064153eta$
}
\[2ex]
h(z)&=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
end{align*}
\[2ex]
f(z)=frac{1}{382112640}frac{g(eta,z)}{h(z)}
end{gather*}
end{document}
answered 2 days ago
egregegreg
732k8919303253
732k8919303253
your answer is OK, but some terms are out of pages margins.
– Nick
2 days ago
7
@Nick Without knowing the line width you're using it's difficult to say more.
– egreg
2 days ago
@Nick egreg's answer uses default margin ofarticle
, which is already really big. But it doesn't fit your margin?
– JouleV
2 days ago
I have moved the signs "-, +" from lines end and put them under sign "=".
– Nick
2 days ago
add a comment |
your answer is OK, but some terms are out of pages margins.
– Nick
2 days ago
7
@Nick Without knowing the line width you're using it's difficult to say more.
– egreg
2 days ago
@Nick egreg's answer uses default margin ofarticle
, which is already really big. But it doesn't fit your margin?
– JouleV
2 days ago
I have moved the signs "-, +" from lines end and put them under sign "=".
– Nick
2 days ago
your answer is OK, but some terms are out of pages margins.
– Nick
2 days ago
your answer is OK, but some terms are out of pages margins.
– Nick
2 days ago
7
7
@Nick Without knowing the line width you're using it's difficult to say more.
– egreg
2 days ago
@Nick Without knowing the line width you're using it's difficult to say more.
– egreg
2 days ago
@Nick egreg's answer uses default margin of
article
, which is already really big. But it doesn't fit your margin?– JouleV
2 days ago
@Nick egreg's answer uses default margin of
article
, which is already really big. But it doesn't fit your margin?– JouleV
2 days ago
I have moved the signs "-, +" from lines end and put them under sign "=".
– Nick
2 days ago
I have moved the signs "-, +" from lines end and put them under sign "=".
– Nick
2 days ago
add a comment |
or
documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools, nccmath}
begin{document}
begin{multline*}medmath
f(z)=frac{1}{382112640}
frac{left[
begin{multlined}
-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-\
1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+\
11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-\
78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+\
228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-\
317254092617698017425280eta^5z-443761561344388063474665eta^4z+\
82327155732241730770824eta z - 514623285385260545505123eta^2z-\
1010535343560043404912120eta^2-357788302700438191196160eta^5-\
43808044579418934376632-214023244873618345872240eta^4+\
11818373349781028079eta^3+347370177721463765064153eta
end{multlined}right]}
{(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
end{multline*}
add a comment |
or
documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools, nccmath}
begin{document}
begin{multline*}medmath
f(z)=frac{1}{382112640}
frac{left[
begin{multlined}
-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-\
1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+\
11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-\
78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+\
228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-\
317254092617698017425280eta^5z-443761561344388063474665eta^4z+\
82327155732241730770824eta z - 514623285385260545505123eta^2z-\
1010535343560043404912120eta^2-357788302700438191196160eta^5-\
43808044579418934376632-214023244873618345872240eta^4+\
11818373349781028079eta^3+347370177721463765064153eta
end{multlined}right]}
{(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
end{multline*}
add a comment |
or
documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools, nccmath}
begin{document}
begin{multline*}medmath
f(z)=frac{1}{382112640}
frac{left[
begin{multlined}
-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-\
1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+\
11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-\
78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+\
228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-\
317254092617698017425280eta^5z-443761561344388063474665eta^4z+\
82327155732241730770824eta z - 514623285385260545505123eta^2z-\
1010535343560043404912120eta^2-357788302700438191196160eta^5-\
43808044579418934376632-214023244873618345872240eta^4+\
11818373349781028079eta^3+347370177721463765064153eta
end{multlined}right]}
{(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
end{multline*}
or
documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools, nccmath}
begin{document}
begin{multline*}medmath
f(z)=frac{1}{382112640}
frac{left[
begin{multlined}
-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-\
1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+\
11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-\
78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+\
228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-\
317254092617698017425280eta^5z-443761561344388063474665eta^4z+\
82327155732241730770824eta z - 514623285385260545505123eta^2z-\
1010535343560043404912120eta^2-357788302700438191196160eta^5-\
43808044579418934376632-214023244873618345872240eta^4+\
11818373349781028079eta^3+347370177721463765064153eta
end{multlined}right]}
{(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
end{multline*}
answered 2 days ago
ZarkoZarko
129k868169
129k868169
add a comment |
add a comment |
Given the nature of the operations, you can probably express this in a tidy manner using matrix multiplication notation, eg:
where:
Code:
$$ f(z)=frac{1}{382,112,640} ; frac{g(eta, z)}{u(z) , v(z) , w(z) } $$
where
$$
begin{array}{ll}
g(eta, z) =
begin{bmatrix}
begin{array}{r @{hspace{0em}} r}
- & 306,772,802,511,648,469,920 \
& 762,453,974,480,763,801,600 \
- & 1,678,626,210,368,271,790,080 \
- & 28,510,918,043,555,533,736,160 \
& 11,443,138,641,451,067,779,872 \
- & 52,164,076,923,190,540,413,504 \
- & 78,145,258,181,161,076,156,160 \
- & 211,306,163,712,129,371,808,450 \
& 228,927,087,397,104,405,937,944 \
& 999,881,065,017,543,109,136,462 \
- & 317,254,092,617,698,017,425,280 \
- & 443,761,561,344,388,063,474,665 \
& 82,327,155,732,241,730,770,824 \
- & 514,623,285,385,260,545,505,123 \
- & 1,010,535,343,560,043,404,912,120 \
- & 357,788,302,700,438,191,196,160 \
- & 43,808,044,579,418,934,376,632 \
- & 214,023,244,873,618,345,872,240 \
& 11,818,373,349,781,028,079 \
& 347,370,177,721,463,765,064,153
end{array}
end{bmatrix}^T
begin{bmatrix}
begin{array}{l}
eta^4z^4 \
eta^5z^4 \
eta^5z^3 \
eta^4z^3 \
eta^3z^3 \
eta^2z^2 \
eta^5z^2 \
eta^4z^2 \
eta^3z^2 \
eta^3z \
eta^5z \
eta^4z \
eta z \
eta^2z \
eta^2 \
eta^5 \
1 \
eta^4 \
eta^3 \
eta
end{array}
end{bmatrix}
&
begin{array}{l}
u(z) = begin{bmatrix} begin{array}{r @{hspace{0em}} r} & 417,420 \ - & 4,169,121 \ - & 15,571,312 end{array}end{bmatrix}^T begin{bmatrix} begin{array}{l} z^2 \ z \ 1 end{array}end{bmatrix}\[3em]
v(z) = begin{bmatrix} begin{array}{r @{hspace{0em}} r} & 1,546 \ & 3,537 end{array}end{bmatrix}^T begin{bmatrix}begin{array}{l} z \ 1 end{array}end{bmatrix}\[3em]
w(z) = begin{bmatrix}begin{array}{r @{hspace{0em}} r} & 3,092 \ & 17,001 end{array}end{bmatrix}^T begin{bmatrix}begin{array}{l} z \ 1 end{array}end{bmatrix} \[3em]
end{array}
end{array}
$$
PS. Having said that, given the nature of the numbers involved, I would also agree with Mefitico's point of view in the comments, i.e. it's best to create a variable with indices and express via a cleaner expression, and then refer to a table mapping those indices to the actual numbers involved.
1
The round brackets in the definitions of $u$, $v$ and $w$ seem superfluous.
– jochen
yesterday
1
From the point of view of someone wishing or needing to use such a polynomial, it would be helpful to insert breaks in all the long numbers to ease readability.
– JeremyC
22 hours ago
@jochen thanks, updated
– Tasos Papastylianou
10 hours ago
@JeremyC thanks, updated. I went for comma delimiters rather than breaks, as that might have been misleading in the context of matrix notation.
– Tasos Papastylianou
10 hours ago
add a comment |
Given the nature of the operations, you can probably express this in a tidy manner using matrix multiplication notation, eg:
where:
Code:
$$ f(z)=frac{1}{382,112,640} ; frac{g(eta, z)}{u(z) , v(z) , w(z) } $$
where
$$
begin{array}{ll}
g(eta, z) =
begin{bmatrix}
begin{array}{r @{hspace{0em}} r}
- & 306,772,802,511,648,469,920 \
& 762,453,974,480,763,801,600 \
- & 1,678,626,210,368,271,790,080 \
- & 28,510,918,043,555,533,736,160 \
& 11,443,138,641,451,067,779,872 \
- & 52,164,076,923,190,540,413,504 \
- & 78,145,258,181,161,076,156,160 \
- & 211,306,163,712,129,371,808,450 \
& 228,927,087,397,104,405,937,944 \
& 999,881,065,017,543,109,136,462 \
- & 317,254,092,617,698,017,425,280 \
- & 443,761,561,344,388,063,474,665 \
& 82,327,155,732,241,730,770,824 \
- & 514,623,285,385,260,545,505,123 \
- & 1,010,535,343,560,043,404,912,120 \
- & 357,788,302,700,438,191,196,160 \
- & 43,808,044,579,418,934,376,632 \
- & 214,023,244,873,618,345,872,240 \
& 11,818,373,349,781,028,079 \
& 347,370,177,721,463,765,064,153
end{array}
end{bmatrix}^T
begin{bmatrix}
begin{array}{l}
eta^4z^4 \
eta^5z^4 \
eta^5z^3 \
eta^4z^3 \
eta^3z^3 \
eta^2z^2 \
eta^5z^2 \
eta^4z^2 \
eta^3z^2 \
eta^3z \
eta^5z \
eta^4z \
eta z \
eta^2z \
eta^2 \
eta^5 \
1 \
eta^4 \
eta^3 \
eta
end{array}
end{bmatrix}
&
begin{array}{l}
u(z) = begin{bmatrix} begin{array}{r @{hspace{0em}} r} & 417,420 \ - & 4,169,121 \ - & 15,571,312 end{array}end{bmatrix}^T begin{bmatrix} begin{array}{l} z^2 \ z \ 1 end{array}end{bmatrix}\[3em]
v(z) = begin{bmatrix} begin{array}{r @{hspace{0em}} r} & 1,546 \ & 3,537 end{array}end{bmatrix}^T begin{bmatrix}begin{array}{l} z \ 1 end{array}end{bmatrix}\[3em]
w(z) = begin{bmatrix}begin{array}{r @{hspace{0em}} r} & 3,092 \ & 17,001 end{array}end{bmatrix}^T begin{bmatrix}begin{array}{l} z \ 1 end{array}end{bmatrix} \[3em]
end{array}
end{array}
$$
PS. Having said that, given the nature of the numbers involved, I would also agree with Mefitico's point of view in the comments, i.e. it's best to create a variable with indices and express via a cleaner expression, and then refer to a table mapping those indices to the actual numbers involved.
1
The round brackets in the definitions of $u$, $v$ and $w$ seem superfluous.
– jochen
yesterday
1
From the point of view of someone wishing or needing to use such a polynomial, it would be helpful to insert breaks in all the long numbers to ease readability.
– JeremyC
22 hours ago
@jochen thanks, updated
– Tasos Papastylianou
10 hours ago
@JeremyC thanks, updated. I went for comma delimiters rather than breaks, as that might have been misleading in the context of matrix notation.
– Tasos Papastylianou
10 hours ago
add a comment |
Given the nature of the operations, you can probably express this in a tidy manner using matrix multiplication notation, eg:
where:
Code:
$$ f(z)=frac{1}{382,112,640} ; frac{g(eta, z)}{u(z) , v(z) , w(z) } $$
where
$$
begin{array}{ll}
g(eta, z) =
begin{bmatrix}
begin{array}{r @{hspace{0em}} r}
- & 306,772,802,511,648,469,920 \
& 762,453,974,480,763,801,600 \
- & 1,678,626,210,368,271,790,080 \
- & 28,510,918,043,555,533,736,160 \
& 11,443,138,641,451,067,779,872 \
- & 52,164,076,923,190,540,413,504 \
- & 78,145,258,181,161,076,156,160 \
- & 211,306,163,712,129,371,808,450 \
& 228,927,087,397,104,405,937,944 \
& 999,881,065,017,543,109,136,462 \
- & 317,254,092,617,698,017,425,280 \
- & 443,761,561,344,388,063,474,665 \
& 82,327,155,732,241,730,770,824 \
- & 514,623,285,385,260,545,505,123 \
- & 1,010,535,343,560,043,404,912,120 \
- & 357,788,302,700,438,191,196,160 \
- & 43,808,044,579,418,934,376,632 \
- & 214,023,244,873,618,345,872,240 \
& 11,818,373,349,781,028,079 \
& 347,370,177,721,463,765,064,153
end{array}
end{bmatrix}^T
begin{bmatrix}
begin{array}{l}
eta^4z^4 \
eta^5z^4 \
eta^5z^3 \
eta^4z^3 \
eta^3z^3 \
eta^2z^2 \
eta^5z^2 \
eta^4z^2 \
eta^3z^2 \
eta^3z \
eta^5z \
eta^4z \
eta z \
eta^2z \
eta^2 \
eta^5 \
1 \
eta^4 \
eta^3 \
eta
end{array}
end{bmatrix}
&
begin{array}{l}
u(z) = begin{bmatrix} begin{array}{r @{hspace{0em}} r} & 417,420 \ - & 4,169,121 \ - & 15,571,312 end{array}end{bmatrix}^T begin{bmatrix} begin{array}{l} z^2 \ z \ 1 end{array}end{bmatrix}\[3em]
v(z) = begin{bmatrix} begin{array}{r @{hspace{0em}} r} & 1,546 \ & 3,537 end{array}end{bmatrix}^T begin{bmatrix}begin{array}{l} z \ 1 end{array}end{bmatrix}\[3em]
w(z) = begin{bmatrix}begin{array}{r @{hspace{0em}} r} & 3,092 \ & 17,001 end{array}end{bmatrix}^T begin{bmatrix}begin{array}{l} z \ 1 end{array}end{bmatrix} \[3em]
end{array}
end{array}
$$
PS. Having said that, given the nature of the numbers involved, I would also agree with Mefitico's point of view in the comments, i.e. it's best to create a variable with indices and express via a cleaner expression, and then refer to a table mapping those indices to the actual numbers involved.
Given the nature of the operations, you can probably express this in a tidy manner using matrix multiplication notation, eg:
where:
Code:
$$ f(z)=frac{1}{382,112,640} ; frac{g(eta, z)}{u(z) , v(z) , w(z) } $$
where
$$
begin{array}{ll}
g(eta, z) =
begin{bmatrix}
begin{array}{r @{hspace{0em}} r}
- & 306,772,802,511,648,469,920 \
& 762,453,974,480,763,801,600 \
- & 1,678,626,210,368,271,790,080 \
- & 28,510,918,043,555,533,736,160 \
& 11,443,138,641,451,067,779,872 \
- & 52,164,076,923,190,540,413,504 \
- & 78,145,258,181,161,076,156,160 \
- & 211,306,163,712,129,371,808,450 \
& 228,927,087,397,104,405,937,944 \
& 999,881,065,017,543,109,136,462 \
- & 317,254,092,617,698,017,425,280 \
- & 443,761,561,344,388,063,474,665 \
& 82,327,155,732,241,730,770,824 \
- & 514,623,285,385,260,545,505,123 \
- & 1,010,535,343,560,043,404,912,120 \
- & 357,788,302,700,438,191,196,160 \
- & 43,808,044,579,418,934,376,632 \
- & 214,023,244,873,618,345,872,240 \
& 11,818,373,349,781,028,079 \
& 347,370,177,721,463,765,064,153
end{array}
end{bmatrix}^T
begin{bmatrix}
begin{array}{l}
eta^4z^4 \
eta^5z^4 \
eta^5z^3 \
eta^4z^3 \
eta^3z^3 \
eta^2z^2 \
eta^5z^2 \
eta^4z^2 \
eta^3z^2 \
eta^3z \
eta^5z \
eta^4z \
eta z \
eta^2z \
eta^2 \
eta^5 \
1 \
eta^4 \
eta^3 \
eta
end{array}
end{bmatrix}
&
begin{array}{l}
u(z) = begin{bmatrix} begin{array}{r @{hspace{0em}} r} & 417,420 \ - & 4,169,121 \ - & 15,571,312 end{array}end{bmatrix}^T begin{bmatrix} begin{array}{l} z^2 \ z \ 1 end{array}end{bmatrix}\[3em]
v(z) = begin{bmatrix} begin{array}{r @{hspace{0em}} r} & 1,546 \ & 3,537 end{array}end{bmatrix}^T begin{bmatrix}begin{array}{l} z \ 1 end{array}end{bmatrix}\[3em]
w(z) = begin{bmatrix}begin{array}{r @{hspace{0em}} r} & 3,092 \ & 17,001 end{array}end{bmatrix}^T begin{bmatrix}begin{array}{l} z \ 1 end{array}end{bmatrix} \[3em]
end{array}
end{array}
$$
PS. Having said that, given the nature of the numbers involved, I would also agree with Mefitico's point of view in the comments, i.e. it's best to create a variable with indices and express via a cleaner expression, and then refer to a table mapping those indices to the actual numbers involved.
edited 10 hours ago
answered 2 days ago
Tasos PapastylianouTasos Papastylianou
327211
327211
1
The round brackets in the definitions of $u$, $v$ and $w$ seem superfluous.
– jochen
yesterday
1
From the point of view of someone wishing or needing to use such a polynomial, it would be helpful to insert breaks in all the long numbers to ease readability.
– JeremyC
22 hours ago
@jochen thanks, updated
– Tasos Papastylianou
10 hours ago
@JeremyC thanks, updated. I went for comma delimiters rather than breaks, as that might have been misleading in the context of matrix notation.
– Tasos Papastylianou
10 hours ago
add a comment |
1
The round brackets in the definitions of $u$, $v$ and $w$ seem superfluous.
– jochen
yesterday
1
From the point of view of someone wishing or needing to use such a polynomial, it would be helpful to insert breaks in all the long numbers to ease readability.
– JeremyC
22 hours ago
@jochen thanks, updated
– Tasos Papastylianou
10 hours ago
@JeremyC thanks, updated. I went for comma delimiters rather than breaks, as that might have been misleading in the context of matrix notation.
– Tasos Papastylianou
10 hours ago
1
1
The round brackets in the definitions of $u$, $v$ and $w$ seem superfluous.
– jochen
yesterday
The round brackets in the definitions of $u$, $v$ and $w$ seem superfluous.
– jochen
yesterday
1
1
From the point of view of someone wishing or needing to use such a polynomial, it would be helpful to insert breaks in all the long numbers to ease readability.
– JeremyC
22 hours ago
From the point of view of someone wishing or needing to use such a polynomial, it would be helpful to insert breaks in all the long numbers to ease readability.
– JeremyC
22 hours ago
@jochen thanks, updated
– Tasos Papastylianou
10 hours ago
@jochen thanks, updated
– Tasos Papastylianou
10 hours ago
@JeremyC thanks, updated. I went for comma delimiters rather than breaks, as that might have been misleading in the context of matrix notation.
– Tasos Papastylianou
10 hours ago
@JeremyC thanks, updated. I went for comma delimiters rather than breaks, as that might have been misleading in the context of matrix notation.
– Tasos Papastylianou
10 hours ago
add a comment |
I recommend aligning the variables and adding some form of thousand-separators, both will enhance the readability. What I also recommend (but didn't do here) is sorting by the powers of the first and then the second variable. This is a modification of JuleV's answer.
documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
Blah blah
[f(z)=frac{1}{382112640}cdotfrac{A}{B}]
where
[
arraycolsep=0.5pt
begin{array}{rrllrll}
A=&, -306,772,802,511,648,469,920 &eta^4 &z^4 & +762,453,974,480,763,801,600 &eta^5 &z^4\
&, -1,678,626,210,368,271,790,080 &eta^5 &z^3 & -2,8510,918,043,555,533,736,160 &eta^4 &z^3\
&, +11,443,138,641,451,067,779,872 &eta^3 &z^3 & -5,2164,076,923,190,540,413,504 &eta^2 &z^2\
&, -78,145,258,181,161,076,156,160 &eta^5 &z^2 & -21,1306,163,712,129,371,808,450 &eta^4 &z^2\
&, +228,927,087,397,104,405,937,944 &eta^3 &z^2 & +99,9881,065,017,543,109,136,462 &eta^3 &z\
&, -317,254,092,617,698,017,425,280 &eta^5 &z & -44,3761,561,344,388,063,474,665 &eta^4 &z\
&, +82,327,155,732,241,730,770,824 &eta &z & -51,4623,285,385,260,545,505,123 &eta^2 &z\
&,-1,010,535,343,560,043,404,912,120 &eta^2 & & -35,7788,302,700,438,191,196,160 &eta^5 &\
&, -43,808,044,579,418,934,376,632 & & & -21,4023,244,873,618,345,872,240 &eta^4 &\
&, +11,818,373,349,781,028,079 &eta^3 & & +34,7370,177,721,463,765,064,153 &eta &
end{array}
]
and
[B=(417,420z^2-4,169,121z-15,571,312)(1,546z+3,537)(3,092z+17,001)]
end{document}
I'm sure there are also some custom packages that can do this for you but this is just using the packages you provided:
add a comment |
I recommend aligning the variables and adding some form of thousand-separators, both will enhance the readability. What I also recommend (but didn't do here) is sorting by the powers of the first and then the second variable. This is a modification of JuleV's answer.
documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
Blah blah
[f(z)=frac{1}{382112640}cdotfrac{A}{B}]
where
[
arraycolsep=0.5pt
begin{array}{rrllrll}
A=&, -306,772,802,511,648,469,920 &eta^4 &z^4 & +762,453,974,480,763,801,600 &eta^5 &z^4\
&, -1,678,626,210,368,271,790,080 &eta^5 &z^3 & -2,8510,918,043,555,533,736,160 &eta^4 &z^3\
&, +11,443,138,641,451,067,779,872 &eta^3 &z^3 & -5,2164,076,923,190,540,413,504 &eta^2 &z^2\
&, -78,145,258,181,161,076,156,160 &eta^5 &z^2 & -21,1306,163,712,129,371,808,450 &eta^4 &z^2\
&, +228,927,087,397,104,405,937,944 &eta^3 &z^2 & +99,9881,065,017,543,109,136,462 &eta^3 &z\
&, -317,254,092,617,698,017,425,280 &eta^5 &z & -44,3761,561,344,388,063,474,665 &eta^4 &z\
&, +82,327,155,732,241,730,770,824 &eta &z & -51,4623,285,385,260,545,505,123 &eta^2 &z\
&,-1,010,535,343,560,043,404,912,120 &eta^2 & & -35,7788,302,700,438,191,196,160 &eta^5 &\
&, -43,808,044,579,418,934,376,632 & & & -21,4023,244,873,618,345,872,240 &eta^4 &\
&, +11,818,373,349,781,028,079 &eta^3 & & +34,7370,177,721,463,765,064,153 &eta &
end{array}
]
and
[B=(417,420z^2-4,169,121z-15,571,312)(1,546z+3,537)(3,092z+17,001)]
end{document}
I'm sure there are also some custom packages that can do this for you but this is just using the packages you provided:
add a comment |
I recommend aligning the variables and adding some form of thousand-separators, both will enhance the readability. What I also recommend (but didn't do here) is sorting by the powers of the first and then the second variable. This is a modification of JuleV's answer.
documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
Blah blah
[f(z)=frac{1}{382112640}cdotfrac{A}{B}]
where
[
arraycolsep=0.5pt
begin{array}{rrllrll}
A=&, -306,772,802,511,648,469,920 &eta^4 &z^4 & +762,453,974,480,763,801,600 &eta^5 &z^4\
&, -1,678,626,210,368,271,790,080 &eta^5 &z^3 & -2,8510,918,043,555,533,736,160 &eta^4 &z^3\
&, +11,443,138,641,451,067,779,872 &eta^3 &z^3 & -5,2164,076,923,190,540,413,504 &eta^2 &z^2\
&, -78,145,258,181,161,076,156,160 &eta^5 &z^2 & -21,1306,163,712,129,371,808,450 &eta^4 &z^2\
&, +228,927,087,397,104,405,937,944 &eta^3 &z^2 & +99,9881,065,017,543,109,136,462 &eta^3 &z\
&, -317,254,092,617,698,017,425,280 &eta^5 &z & -44,3761,561,344,388,063,474,665 &eta^4 &z\
&, +82,327,155,732,241,730,770,824 &eta &z & -51,4623,285,385,260,545,505,123 &eta^2 &z\
&,-1,010,535,343,560,043,404,912,120 &eta^2 & & -35,7788,302,700,438,191,196,160 &eta^5 &\
&, -43,808,044,579,418,934,376,632 & & & -21,4023,244,873,618,345,872,240 &eta^4 &\
&, +11,818,373,349,781,028,079 &eta^3 & & +34,7370,177,721,463,765,064,153 &eta &
end{array}
]
and
[B=(417,420z^2-4,169,121z-15,571,312)(1,546z+3,537)(3,092z+17,001)]
end{document}
I'm sure there are also some custom packages that can do this for you but this is just using the packages you provided:
I recommend aligning the variables and adding some form of thousand-separators, both will enhance the readability. What I also recommend (but didn't do here) is sorting by the powers of the first and then the second variable. This is a modification of JuleV's answer.
documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
Blah blah
[f(z)=frac{1}{382112640}cdotfrac{A}{B}]
where
[
arraycolsep=0.5pt
begin{array}{rrllrll}
A=&, -306,772,802,511,648,469,920 &eta^4 &z^4 & +762,453,974,480,763,801,600 &eta^5 &z^4\
&, -1,678,626,210,368,271,790,080 &eta^5 &z^3 & -2,8510,918,043,555,533,736,160 &eta^4 &z^3\
&, +11,443,138,641,451,067,779,872 &eta^3 &z^3 & -5,2164,076,923,190,540,413,504 &eta^2 &z^2\
&, -78,145,258,181,161,076,156,160 &eta^5 &z^2 & -21,1306,163,712,129,371,808,450 &eta^4 &z^2\
&, +228,927,087,397,104,405,937,944 &eta^3 &z^2 & +99,9881,065,017,543,109,136,462 &eta^3 &z\
&, -317,254,092,617,698,017,425,280 &eta^5 &z & -44,3761,561,344,388,063,474,665 &eta^4 &z\
&, +82,327,155,732,241,730,770,824 &eta &z & -51,4623,285,385,260,545,505,123 &eta^2 &z\
&,-1,010,535,343,560,043,404,912,120 &eta^2 & & -35,7788,302,700,438,191,196,160 &eta^5 &\
&, -43,808,044,579,418,934,376,632 & & & -21,4023,244,873,618,345,872,240 &eta^4 &\
&, +11,818,373,349,781,028,079 &eta^3 & & +34,7370,177,721,463,765,064,153 &eta &
end{array}
]
and
[B=(417,420z^2-4,169,121z-15,571,312)(1,546z+3,537)(3,092z+17,001)]
end{document}
I'm sure there are also some custom packages that can do this for you but this is just using the packages you provided:
answered 2 days ago
flawrflawr
527413
527413
add a comment |
add a comment |
I would usually use the package breqn
. That automatically line-breaks equations, and has a lot of very nice features, but uses low-level having into the maths primitives, which means it tends to make a mess of other packages what do the same thing (for example, you can't use both breqn
and sansmath
in the same document)
begin{dmath*}
f(z)=frac{1}{382112640}times-306772802511648469920eta^4z^4+left(762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028079eta^3+347370177721463765064153etaright)timesleft(left(417420z^2-4169121z-15571312right)left(1546z+3537right)left(3092z+17001right)right)^{-1}
end{dmath*}
which produces
IMO the right-alignment is ugly but apparently that's the AMS standard - without the brackets it left aligns all those lines like the alginat
version.
add a comment |
I would usually use the package breqn
. That automatically line-breaks equations, and has a lot of very nice features, but uses low-level having into the maths primitives, which means it tends to make a mess of other packages what do the same thing (for example, you can't use both breqn
and sansmath
in the same document)
begin{dmath*}
f(z)=frac{1}{382112640}times-306772802511648469920eta^4z^4+left(762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028079eta^3+347370177721463765064153etaright)timesleft(left(417420z^2-4169121z-15571312right)left(1546z+3537right)left(3092z+17001right)right)^{-1}
end{dmath*}
which produces
IMO the right-alignment is ugly but apparently that's the AMS standard - without the brackets it left aligns all those lines like the alginat
version.
add a comment |
I would usually use the package breqn
. That automatically line-breaks equations, and has a lot of very nice features, but uses low-level having into the maths primitives, which means it tends to make a mess of other packages what do the same thing (for example, you can't use both breqn
and sansmath
in the same document)
begin{dmath*}
f(z)=frac{1}{382112640}times-306772802511648469920eta^4z^4+left(762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028079eta^3+347370177721463765064153etaright)timesleft(left(417420z^2-4169121z-15571312right)left(1546z+3537right)left(3092z+17001right)right)^{-1}
end{dmath*}
which produces
IMO the right-alignment is ugly but apparently that's the AMS standard - without the brackets it left aligns all those lines like the alginat
version.
I would usually use the package breqn
. That automatically line-breaks equations, and has a lot of very nice features, but uses low-level having into the maths primitives, which means it tends to make a mess of other packages what do the same thing (for example, you can't use both breqn
and sansmath
in the same document)
begin{dmath*}
f(z)=frac{1}{382112640}times-306772802511648469920eta^4z^4+left(762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028079eta^3+347370177721463765064153etaright)timesleft(left(417420z^2-4169121z-15571312right)left(1546z+3537right)left(3092z+17001right)right)^{-1}
end{dmath*}
which produces
IMO the right-alignment is ugly but apparently that's the AMS standard - without the brackets it left aligns all those lines like the alginat
version.
answered 2 days ago
PhilipPhilip
235
235
add a comment |
add a comment |
Following the original disposition of the function, but using alignat
, parenthesis, and fractions to emphasize its different terms.
documentclass{article}
usepackage{mathtools}
begin{document}
begin{alignat*}{2}
& f(z) && = frac{1}{382112640} times left( vphantom{frac{1}{382112640}} -306772802511648469920 eta^4 z^4 + 762453974480763801600 eta^5 z^4 right. \[1.5ex]
& && -1678626210368271790080 eta^5 z^3 -28510918043555533736160 eta^4 z^3 \[1.5ex]
& && +11443138641451067779872 eta^3 z^3 -52164076923190540413504 eta^2 z^2 \[1.5ex]
& && -78145258181161076156160 eta^5 z^2 -211306163712129371808450 eta^4 z^2 \[1.5ex]
& && +228927087397104405937944 eta^3 z^2 +999881065017543109136462 eta^3 z \[1.5ex]
& && -317254092617698017425280 eta^5 z -443761561344388063474665 eta^4 z \[1.5ex]
& && +82327155732241730770824 eta z -514623285385260545505123 eta^2 z \[1.5ex]
& && -1010535343560043404912120 eta^2 -357788302700438191196160 eta^5 \[1.5ex]
& && -43808044579418934376632 -214023244873618345872240 eta^4 \[1.5ex]
& && +11818373349781028079 eta^3 +347370177721463765064153eta left. vphantom{frac{1}{382112640}} right) \[1.5ex]
& && times frac{1}{(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
end{alignat*}
end{document}
Do you think this fits the page margin?
– JouleV
2 days ago
It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.
– Andre
2 days ago
In the original question, the term 417420z^2-4169121z-15571312 is in denominator, not in the numerator as you place it.
– quark67
yesterday
OK. I will revise this.
– Andre
18 hours ago
Revised the members of the last fraction. Also added a line for the last term (which also ensures that the display will fit the margins).
– Andre
16 hours ago
add a comment |
Following the original disposition of the function, but using alignat
, parenthesis, and fractions to emphasize its different terms.
documentclass{article}
usepackage{mathtools}
begin{document}
begin{alignat*}{2}
& f(z) && = frac{1}{382112640} times left( vphantom{frac{1}{382112640}} -306772802511648469920 eta^4 z^4 + 762453974480763801600 eta^5 z^4 right. \[1.5ex]
& && -1678626210368271790080 eta^5 z^3 -28510918043555533736160 eta^4 z^3 \[1.5ex]
& && +11443138641451067779872 eta^3 z^3 -52164076923190540413504 eta^2 z^2 \[1.5ex]
& && -78145258181161076156160 eta^5 z^2 -211306163712129371808450 eta^4 z^2 \[1.5ex]
& && +228927087397104405937944 eta^3 z^2 +999881065017543109136462 eta^3 z \[1.5ex]
& && -317254092617698017425280 eta^5 z -443761561344388063474665 eta^4 z \[1.5ex]
& && +82327155732241730770824 eta z -514623285385260545505123 eta^2 z \[1.5ex]
& && -1010535343560043404912120 eta^2 -357788302700438191196160 eta^5 \[1.5ex]
& && -43808044579418934376632 -214023244873618345872240 eta^4 \[1.5ex]
& && +11818373349781028079 eta^3 +347370177721463765064153eta left. vphantom{frac{1}{382112640}} right) \[1.5ex]
& && times frac{1}{(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
end{alignat*}
end{document}
Do you think this fits the page margin?
– JouleV
2 days ago
It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.
– Andre
2 days ago
In the original question, the term 417420z^2-4169121z-15571312 is in denominator, not in the numerator as you place it.
– quark67
yesterday
OK. I will revise this.
– Andre
18 hours ago
Revised the members of the last fraction. Also added a line for the last term (which also ensures that the display will fit the margins).
– Andre
16 hours ago
add a comment |
Following the original disposition of the function, but using alignat
, parenthesis, and fractions to emphasize its different terms.
documentclass{article}
usepackage{mathtools}
begin{document}
begin{alignat*}{2}
& f(z) && = frac{1}{382112640} times left( vphantom{frac{1}{382112640}} -306772802511648469920 eta^4 z^4 + 762453974480763801600 eta^5 z^4 right. \[1.5ex]
& && -1678626210368271790080 eta^5 z^3 -28510918043555533736160 eta^4 z^3 \[1.5ex]
& && +11443138641451067779872 eta^3 z^3 -52164076923190540413504 eta^2 z^2 \[1.5ex]
& && -78145258181161076156160 eta^5 z^2 -211306163712129371808450 eta^4 z^2 \[1.5ex]
& && +228927087397104405937944 eta^3 z^2 +999881065017543109136462 eta^3 z \[1.5ex]
& && -317254092617698017425280 eta^5 z -443761561344388063474665 eta^4 z \[1.5ex]
& && +82327155732241730770824 eta z -514623285385260545505123 eta^2 z \[1.5ex]
& && -1010535343560043404912120 eta^2 -357788302700438191196160 eta^5 \[1.5ex]
& && -43808044579418934376632 -214023244873618345872240 eta^4 \[1.5ex]
& && +11818373349781028079 eta^3 +347370177721463765064153eta left. vphantom{frac{1}{382112640}} right) \[1.5ex]
& && times frac{1}{(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
end{alignat*}
end{document}
Following the original disposition of the function, but using alignat
, parenthesis, and fractions to emphasize its different terms.
documentclass{article}
usepackage{mathtools}
begin{document}
begin{alignat*}{2}
& f(z) && = frac{1}{382112640} times left( vphantom{frac{1}{382112640}} -306772802511648469920 eta^4 z^4 + 762453974480763801600 eta^5 z^4 right. \[1.5ex]
& && -1678626210368271790080 eta^5 z^3 -28510918043555533736160 eta^4 z^3 \[1.5ex]
& && +11443138641451067779872 eta^3 z^3 -52164076923190540413504 eta^2 z^2 \[1.5ex]
& && -78145258181161076156160 eta^5 z^2 -211306163712129371808450 eta^4 z^2 \[1.5ex]
& && +228927087397104405937944 eta^3 z^2 +999881065017543109136462 eta^3 z \[1.5ex]
& && -317254092617698017425280 eta^5 z -443761561344388063474665 eta^4 z \[1.5ex]
& && +82327155732241730770824 eta z -514623285385260545505123 eta^2 z \[1.5ex]
& && -1010535343560043404912120 eta^2 -357788302700438191196160 eta^5 \[1.5ex]
& && -43808044579418934376632 -214023244873618345872240 eta^4 \[1.5ex]
& && +11818373349781028079 eta^3 +347370177721463765064153eta left. vphantom{frac{1}{382112640}} right) \[1.5ex]
& && times frac{1}{(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
end{alignat*}
end{document}
edited 16 hours ago
answered 2 days ago
AndreAndre
1768
1768
Do you think this fits the page margin?
– JouleV
2 days ago
It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.
– Andre
2 days ago
In the original question, the term 417420z^2-4169121z-15571312 is in denominator, not in the numerator as you place it.
– quark67
yesterday
OK. I will revise this.
– Andre
18 hours ago
Revised the members of the last fraction. Also added a line for the last term (which also ensures that the display will fit the margins).
– Andre
16 hours ago
add a comment |
Do you think this fits the page margin?
– JouleV
2 days ago
It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.
– Andre
2 days ago
In the original question, the term 417420z^2-4169121z-15571312 is in denominator, not in the numerator as you place it.
– quark67
yesterday
OK. I will revise this.
– Andre
18 hours ago
Revised the members of the last fraction. Also added a line for the last term (which also ensures that the display will fit the margins).
– Andre
16 hours ago
Do you think this fits the page margin?
– JouleV
2 days ago
Do you think this fits the page margin?
– JouleV
2 days ago
It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.
– Andre
2 days ago
It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.
– Andre
2 days ago
In the original question, the term 417420z^2-4169121z-15571312 is in denominator, not in the numerator as you place it.
– quark67
yesterday
In the original question, the term 417420z^2-4169121z-15571312 is in denominator, not in the numerator as you place it.
– quark67
yesterday
OK. I will revise this.
– Andre
18 hours ago
OK. I will revise this.
– Andre
18 hours ago
Revised the members of the last fraction. Also added a line for the last term (which also ensures that the display will fit the margins).
– Andre
16 hours ago
Revised the members of the last fraction. Also added a line for the last term (which also ensures that the display will fit the margins).
– Andre
16 hours ago
add a comment |
Thanks for contributing an answer to TeX - LaTeX Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f483300%2fhow-to-format-a-long-polynomial%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
5
For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_{i,j}$ and then adding a table to show the values.
– Mefitico
2 days ago
1
@Mefitico It is a nice option! Why don't you post an answer?
– JouleV
2 days ago
1
@JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!"
– Mefitico
2 days ago
@Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression.
– JouleV
2 days ago