How to format a long polynomial












10















I have a long polynomial:



documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
$ f(z)=frac{1}{382112640}(-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028\
079eta^3+347370177721463765064153eta)/((417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001))$
end{document}


How do I format such a long polynomial correctly?










share|improve this question




















  • 5





    For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_{i,j}$ and then adding a table to show the values.

    – Mefitico
    2 days ago






  • 1





    @Mefitico It is a nice option! Why don't you post an answer?

    – JouleV
    2 days ago






  • 1





    @JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!"

    – Mefitico
    2 days ago











  • @Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression.

    – JouleV
    2 days ago
















10















I have a long polynomial:



documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
$ f(z)=frac{1}{382112640}(-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028\
079eta^3+347370177721463765064153eta)/((417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001))$
end{document}


How do I format such a long polynomial correctly?










share|improve this question




















  • 5





    For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_{i,j}$ and then adding a table to show the values.

    – Mefitico
    2 days ago






  • 1





    @Mefitico It is a nice option! Why don't you post an answer?

    – JouleV
    2 days ago






  • 1





    @JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!"

    – Mefitico
    2 days ago











  • @Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression.

    – JouleV
    2 days ago














10












10








10








I have a long polynomial:



documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
$ f(z)=frac{1}{382112640}(-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028\
079eta^3+347370177721463765064153eta)/((417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001))$
end{document}


How do I format such a long polynomial correctly?










share|improve this question
















I have a long polynomial:



documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
$ f(z)=frac{1}{382112640}(-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028\
079eta^3+347370177721463765064153eta)/((417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001))$
end{document}


How do I format such a long polynomial correctly?







math-mode






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 16 hours ago









Peter Mortensen

54837




54837










asked 2 days ago









NickNick

1987




1987








  • 5





    For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_{i,j}$ and then adding a table to show the values.

    – Mefitico
    2 days ago






  • 1





    @Mefitico It is a nice option! Why don't you post an answer?

    – JouleV
    2 days ago






  • 1





    @JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!"

    – Mefitico
    2 days ago











  • @Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression.

    – JouleV
    2 days ago














  • 5





    For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_{i,j}$ and then adding a table to show the values.

    – Mefitico
    2 days ago






  • 1





    @Mefitico It is a nice option! Why don't you post an answer?

    – JouleV
    2 days ago






  • 1





    @JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!"

    – Mefitico
    2 days ago











  • @Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression.

    – JouleV
    2 days ago








5




5





For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_{i,j}$ and then adding a table to show the values.

– Mefitico
2 days ago





For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_{i,j}$ and then adding a table to show the values.

– Mefitico
2 days ago




1




1





@Mefitico It is a nice option! Why don't you post an answer?

– JouleV
2 days ago





@Mefitico It is a nice option! Why don't you post an answer?

– JouleV
2 days ago




1




1





@JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!"

– Mefitico
2 days ago





@JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!"

– Mefitico
2 days ago













@Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression.

– JouleV
2 days ago





@Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression.

– JouleV
2 days ago










7 Answers
7






active

oldest

votes


















14














I would use something like this



documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
Blah blah
[f(z)=frac{1}{382112640}cdotfrac{A}{B}]
where
begin{align*}
A=&,-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4\
&,-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3\
&,+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2\
&,-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2\
&,+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z\
&,-317254092617698017425280eta^5z-443761561344388063474665eta^4z\
&,+82327155732241730770824eta z-514623285385260545505123eta^2z\
&,-1010535343560043404912120eta^2-357788302700438191196160eta^5\
&,-43808044579418934376632-214023244873618345872240eta^4\
&,+11818373349781028079eta^3+347370177721463765064153eta
end{align*}
and
[B=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)]
end{document}


enter image description here






share|improve this answer



















  • 1





    you could format this even more compactly by using matrix multiplication to express A

    – Tasos Papastylianou
    2 days ago



















13














I suggest something line the following, so the wide terms are reduced.



documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}

begin{document}

begin{gather*}
begin{align*}
g(eta,z)&=
parbox[t]{0.85displaywidth}{raggedright
$-306772802511648469920eta^4z^4+
762453974480763801600eta^5z^4-
1678626210368271790080eta^5z^3-
28510918043555533736160eta^4z^3+
11443138641451067779872eta^3z^3-
52164076923190540413504eta^2z^2-
78145258181161076156160eta^5z^2-
211306163712129371808450eta^4z^2+
228927087397104405937944eta^3z^2+
999881065017543109136462eta^3z-
317254092617698017425280eta^5z-
443761561344388063474665eta^4z+
82327155732241730770824eta z-
514623285385260545505123eta^2z-
1010535343560043404912120eta^2-
357788302700438191196160eta^5-
43808044579418934376632-
214023244873618345872240eta^4+
11818373349781028079eta^3+
347370177721463765064153eta$
}
\[2ex]
h(z)&=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
end{align*}
\[2ex]
f(z)=frac{1}{382112640}frac{g(eta,z)}{h(z)}
end{gather*}

end{document}


enter image description here






share|improve this answer
























  • your answer is OK, but some terms are out of pages margins.

    – Nick
    2 days ago






  • 7





    @Nick Without knowing the line width you're using it's difficult to say more.

    – egreg
    2 days ago











  • @Nick egreg's answer uses default margin of article, which is already really big. But it doesn't fit your margin?

    – JouleV
    2 days ago











  • I have moved the signs "-, +" from lines end and put them under sign "=".

    – Nick
    2 days ago



















6














or



enter image description here



documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools, nccmath}
begin{document}
begin{multline*}medmath
f(z)=frac{1}{382112640}
frac{left[
begin{multlined}
-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-\
1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+\
11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-\
78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+\
228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-\
317254092617698017425280eta^5z-443761561344388063474665eta^4z+\
82327155732241730770824eta z - 514623285385260545505123eta^2z-\
1010535343560043404912120eta^2-357788302700438191196160eta^5-\
43808044579418934376632-214023244873618345872240eta^4+\
11818373349781028079eta^3+347370177721463765064153eta
end{multlined}right]}
{(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
end{multline*}





share|improve this answer































    6














    Given the nature of the operations, you can probably express this in a tidy manner using matrix multiplication notation, eg:





    where:





    Code:



    $$ f(z)=frac{1}{382,112,640} ; frac{g(eta, z)}{u(z) , v(z) , w(z) } $$

    where

    $$
    begin{array}{ll}
    g(eta, z) =
    begin{bmatrix}
    begin{array}{r @{hspace{0em}} r}
    - & 306,772,802,511,648,469,920 \
    & 762,453,974,480,763,801,600 \
    - & 1,678,626,210,368,271,790,080 \
    - & 28,510,918,043,555,533,736,160 \
    & 11,443,138,641,451,067,779,872 \
    - & 52,164,076,923,190,540,413,504 \
    - & 78,145,258,181,161,076,156,160 \
    - & 211,306,163,712,129,371,808,450 \
    & 228,927,087,397,104,405,937,944 \
    & 999,881,065,017,543,109,136,462 \
    - & 317,254,092,617,698,017,425,280 \
    - & 443,761,561,344,388,063,474,665 \
    & 82,327,155,732,241,730,770,824 \
    - & 514,623,285,385,260,545,505,123 \
    - & 1,010,535,343,560,043,404,912,120 \
    - & 357,788,302,700,438,191,196,160 \
    - & 43,808,044,579,418,934,376,632 \
    - & 214,023,244,873,618,345,872,240 \
    & 11,818,373,349,781,028,079 \
    & 347,370,177,721,463,765,064,153
    end{array}
    end{bmatrix}^T
    begin{bmatrix}
    begin{array}{l}
    eta^4z^4 \
    eta^5z^4 \
    eta^5z^3 \
    eta^4z^3 \
    eta^3z^3 \
    eta^2z^2 \
    eta^5z^2 \
    eta^4z^2 \
    eta^3z^2 \
    eta^3z \
    eta^5z \
    eta^4z \
    eta z \
    eta^2z \
    eta^2 \
    eta^5 \
    1 \
    eta^4 \
    eta^3 \
    eta
    end{array}
    end{bmatrix}
    &
    begin{array}{l}
    u(z) = begin{bmatrix} begin{array}{r @{hspace{0em}} r} & 417,420 \ - & 4,169,121 \ - & 15,571,312 end{array}end{bmatrix}^T begin{bmatrix} begin{array}{l} z^2 \ z \ 1 end{array}end{bmatrix}\[3em]
    v(z) = begin{bmatrix} begin{array}{r @{hspace{0em}} r} & 1,546 \ & 3,537 end{array}end{bmatrix}^T begin{bmatrix}begin{array}{l} z \ 1 end{array}end{bmatrix}\[3em]
    w(z) = begin{bmatrix}begin{array}{r @{hspace{0em}} r} & 3,092 \ & 17,001 end{array}end{bmatrix}^T begin{bmatrix}begin{array}{l} z \ 1 end{array}end{bmatrix} \[3em]
    end{array}
    end{array}
    $$




    PS. Having said that, given the nature of the numbers involved, I would also agree with Mefitico's point of view in the comments, i.e. it's best to create a variable with indices and express via a cleaner expression, and then refer to a table mapping those indices to the actual numbers involved.






    share|improve this answer





















    • 1





      The round brackets in the definitions of $u$, $v$ and $w$ seem superfluous.

      – jochen
      yesterday






    • 1





      From the point of view of someone wishing or needing to use such a polynomial, it would be helpful to insert breaks in all the long numbers to ease readability.

      – JeremyC
      22 hours ago











    • @jochen thanks, updated

      – Tasos Papastylianou
      10 hours ago











    • @JeremyC thanks, updated. I went for comma delimiters rather than breaks, as that might have been misleading in the context of matrix notation.

      – Tasos Papastylianou
      10 hours ago



















    2














    I recommend aligning the variables and adding some form of thousand-separators, both will enhance the readability. What I also recommend (but didn't do here) is sorting by the powers of the first and then the second variable. This is a modification of JuleV's answer.



    documentclass{article}
    %usepackage{amsmath}% Loaded by mathtools
    usepackage{mathtools}
    begin{document}
    Blah blah
    [f(z)=frac{1}{382112640}cdotfrac{A}{B}]
    where
    [
    arraycolsep=0.5pt
    begin{array}{rrllrll}
    A=&, -306,772,802,511,648,469,920 &eta^4 &z^4 & +762,453,974,480,763,801,600 &eta^5 &z^4\
    &, -1,678,626,210,368,271,790,080 &eta^5 &z^3 & -2,8510,918,043,555,533,736,160 &eta^4 &z^3\
    &, +11,443,138,641,451,067,779,872 &eta^3 &z^3 & -5,2164,076,923,190,540,413,504 &eta^2 &z^2\
    &, -78,145,258,181,161,076,156,160 &eta^5 &z^2 & -21,1306,163,712,129,371,808,450 &eta^4 &z^2\
    &, +228,927,087,397,104,405,937,944 &eta^3 &z^2 & +99,9881,065,017,543,109,136,462 &eta^3 &z\
    &, -317,254,092,617,698,017,425,280 &eta^5 &z & -44,3761,561,344,388,063,474,665 &eta^4 &z\
    &, +82,327,155,732,241,730,770,824 &eta &z & -51,4623,285,385,260,545,505,123 &eta^2 &z\
    &,-1,010,535,343,560,043,404,912,120 &eta^2 & & -35,7788,302,700,438,191,196,160 &eta^5 &\
    &, -43,808,044,579,418,934,376,632 & & & -21,4023,244,873,618,345,872,240 &eta^4 &\
    &, +11,818,373,349,781,028,079 &eta^3 & & +34,7370,177,721,463,765,064,153 &eta &
    end{array}
    ]
    and
    [B=(417,420z^2-4,169,121z-15,571,312)(1,546z+3,537)(3,092z+17,001)]
    end{document}


    I'm sure there are also some custom packages that can do this for you but this is just using the packages you provided:



    enter image description here






    share|improve this answer































      0














      I would usually use the package breqn. That automatically line-breaks equations, and has a lot of very nice features, but uses low-level having into the maths primitives, which means it tends to make a mess of other packages what do the same thing (for example, you can't use both breqn and sansmath in the same document)



      begin{dmath*}
      f(z)=frac{1}{382112640}times-306772802511648469920eta^4z^4+left(762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028079eta^3+347370177721463765064153etaright)timesleft(left(417420z^2-4169121z-15571312right)left(1546z+3537right)left(3092z+17001right)right)^{-1}
      end{dmath*}


      which produces this huge equation



      IMO the right-alignment is ugly but apparently that's the AMS standard - without the brackets it left aligns all those lines like the alginat version.






      share|improve this answer































        0














        Following the original disposition of the function, but using alignat, parenthesis, and fractions to emphasize its different terms.



        documentclass{article}

        usepackage{mathtools}

        begin{document}

        begin{alignat*}{2}
        & f(z) && = frac{1}{382112640} times left( vphantom{frac{1}{382112640}} -306772802511648469920 eta^4 z^4 + 762453974480763801600 eta^5 z^4 right. \[1.5ex]
        & && -1678626210368271790080 eta^5 z^3 -28510918043555533736160 eta^4 z^3 \[1.5ex]
        & && +11443138641451067779872 eta^3 z^3 -52164076923190540413504 eta^2 z^2 \[1.5ex]
        & && -78145258181161076156160 eta^5 z^2 -211306163712129371808450 eta^4 z^2 \[1.5ex]
        & && +228927087397104405937944 eta^3 z^2 +999881065017543109136462 eta^3 z \[1.5ex]
        & && -317254092617698017425280 eta^5 z -443761561344388063474665 eta^4 z \[1.5ex]
        & && +82327155732241730770824 eta z -514623285385260545505123 eta^2 z \[1.5ex]
        & && -1010535343560043404912120 eta^2 -357788302700438191196160 eta^5 \[1.5ex]
        & && -43808044579418934376632 -214023244873618345872240 eta^4 \[1.5ex]
        & && +11818373349781028079 eta^3 +347370177721463765064153eta left. vphantom{frac{1}{382112640}} right) \[1.5ex]
        & && times frac{1}{(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
        end{alignat*}

        end{document}


        fig






        share|improve this answer


























        • Do you think this fits the page margin?

          – JouleV
          2 days ago











        • It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.

          – Andre
          2 days ago













        • In the original question, the term 417420z^2-4169121z-15571312 is in denominator, not in the numerator as you place it.

          – quark67
          yesterday











        • OK. I will revise this.

          – Andre
          18 hours ago











        • Revised the members of the last fraction. Also added a line for the last term (which also ensures that the display will fit the margins).

          – Andre
          16 hours ago














        Your Answer








        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "85"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: false,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: null,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f483300%2fhow-to-format-a-long-polynomial%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        7 Answers
        7






        active

        oldest

        votes








        7 Answers
        7






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        14














        I would use something like this



        documentclass{article}
        %usepackage{amsmath}% Loaded by mathtools
        usepackage{mathtools}
        begin{document}
        Blah blah
        [f(z)=frac{1}{382112640}cdotfrac{A}{B}]
        where
        begin{align*}
        A=&,-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4\
        &,-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3\
        &,+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2\
        &,-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2\
        &,+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z\
        &,-317254092617698017425280eta^5z-443761561344388063474665eta^4z\
        &,+82327155732241730770824eta z-514623285385260545505123eta^2z\
        &,-1010535343560043404912120eta^2-357788302700438191196160eta^5\
        &,-43808044579418934376632-214023244873618345872240eta^4\
        &,+11818373349781028079eta^3+347370177721463765064153eta
        end{align*}
        and
        [B=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)]
        end{document}


        enter image description here






        share|improve this answer



















        • 1





          you could format this even more compactly by using matrix multiplication to express A

          – Tasos Papastylianou
          2 days ago
















        14














        I would use something like this



        documentclass{article}
        %usepackage{amsmath}% Loaded by mathtools
        usepackage{mathtools}
        begin{document}
        Blah blah
        [f(z)=frac{1}{382112640}cdotfrac{A}{B}]
        where
        begin{align*}
        A=&,-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4\
        &,-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3\
        &,+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2\
        &,-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2\
        &,+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z\
        &,-317254092617698017425280eta^5z-443761561344388063474665eta^4z\
        &,+82327155732241730770824eta z-514623285385260545505123eta^2z\
        &,-1010535343560043404912120eta^2-357788302700438191196160eta^5\
        &,-43808044579418934376632-214023244873618345872240eta^4\
        &,+11818373349781028079eta^3+347370177721463765064153eta
        end{align*}
        and
        [B=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)]
        end{document}


        enter image description here






        share|improve this answer



















        • 1





          you could format this even more compactly by using matrix multiplication to express A

          – Tasos Papastylianou
          2 days ago














        14












        14








        14







        I would use something like this



        documentclass{article}
        %usepackage{amsmath}% Loaded by mathtools
        usepackage{mathtools}
        begin{document}
        Blah blah
        [f(z)=frac{1}{382112640}cdotfrac{A}{B}]
        where
        begin{align*}
        A=&,-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4\
        &,-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3\
        &,+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2\
        &,-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2\
        &,+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z\
        &,-317254092617698017425280eta^5z-443761561344388063474665eta^4z\
        &,+82327155732241730770824eta z-514623285385260545505123eta^2z\
        &,-1010535343560043404912120eta^2-357788302700438191196160eta^5\
        &,-43808044579418934376632-214023244873618345872240eta^4\
        &,+11818373349781028079eta^3+347370177721463765064153eta
        end{align*}
        and
        [B=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)]
        end{document}


        enter image description here






        share|improve this answer













        I would use something like this



        documentclass{article}
        %usepackage{amsmath}% Loaded by mathtools
        usepackage{mathtools}
        begin{document}
        Blah blah
        [f(z)=frac{1}{382112640}cdotfrac{A}{B}]
        where
        begin{align*}
        A=&,-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4\
        &,-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3\
        &,+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2\
        &,-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2\
        &,+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z\
        &,-317254092617698017425280eta^5z-443761561344388063474665eta^4z\
        &,+82327155732241730770824eta z-514623285385260545505123eta^2z\
        &,-1010535343560043404912120eta^2-357788302700438191196160eta^5\
        &,-43808044579418934376632-214023244873618345872240eta^4\
        &,+11818373349781028079eta^3+347370177721463765064153eta
        end{align*}
        and
        [B=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)]
        end{document}


        enter image description here







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered 2 days ago









        JouleVJouleV

        11.4k22561




        11.4k22561








        • 1





          you could format this even more compactly by using matrix multiplication to express A

          – Tasos Papastylianou
          2 days ago














        • 1





          you could format this even more compactly by using matrix multiplication to express A

          – Tasos Papastylianou
          2 days ago








        1




        1





        you could format this even more compactly by using matrix multiplication to express A

        – Tasos Papastylianou
        2 days ago





        you could format this even more compactly by using matrix multiplication to express A

        – Tasos Papastylianou
        2 days ago











        13














        I suggest something line the following, so the wide terms are reduced.



        documentclass{article}
        %usepackage{amsmath}% Loaded by mathtools
        usepackage{mathtools}

        begin{document}

        begin{gather*}
        begin{align*}
        g(eta,z)&=
        parbox[t]{0.85displaywidth}{raggedright
        $-306772802511648469920eta^4z^4+
        762453974480763801600eta^5z^4-
        1678626210368271790080eta^5z^3-
        28510918043555533736160eta^4z^3+
        11443138641451067779872eta^3z^3-
        52164076923190540413504eta^2z^2-
        78145258181161076156160eta^5z^2-
        211306163712129371808450eta^4z^2+
        228927087397104405937944eta^3z^2+
        999881065017543109136462eta^3z-
        317254092617698017425280eta^5z-
        443761561344388063474665eta^4z+
        82327155732241730770824eta z-
        514623285385260545505123eta^2z-
        1010535343560043404912120eta^2-
        357788302700438191196160eta^5-
        43808044579418934376632-
        214023244873618345872240eta^4+
        11818373349781028079eta^3+
        347370177721463765064153eta$
        }
        \[2ex]
        h(z)&=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
        end{align*}
        \[2ex]
        f(z)=frac{1}{382112640}frac{g(eta,z)}{h(z)}
        end{gather*}

        end{document}


        enter image description here






        share|improve this answer
























        • your answer is OK, but some terms are out of pages margins.

          – Nick
          2 days ago






        • 7





          @Nick Without knowing the line width you're using it's difficult to say more.

          – egreg
          2 days ago











        • @Nick egreg's answer uses default margin of article, which is already really big. But it doesn't fit your margin?

          – JouleV
          2 days ago











        • I have moved the signs "-, +" from lines end and put them under sign "=".

          – Nick
          2 days ago
















        13














        I suggest something line the following, so the wide terms are reduced.



        documentclass{article}
        %usepackage{amsmath}% Loaded by mathtools
        usepackage{mathtools}

        begin{document}

        begin{gather*}
        begin{align*}
        g(eta,z)&=
        parbox[t]{0.85displaywidth}{raggedright
        $-306772802511648469920eta^4z^4+
        762453974480763801600eta^5z^4-
        1678626210368271790080eta^5z^3-
        28510918043555533736160eta^4z^3+
        11443138641451067779872eta^3z^3-
        52164076923190540413504eta^2z^2-
        78145258181161076156160eta^5z^2-
        211306163712129371808450eta^4z^2+
        228927087397104405937944eta^3z^2+
        999881065017543109136462eta^3z-
        317254092617698017425280eta^5z-
        443761561344388063474665eta^4z+
        82327155732241730770824eta z-
        514623285385260545505123eta^2z-
        1010535343560043404912120eta^2-
        357788302700438191196160eta^5-
        43808044579418934376632-
        214023244873618345872240eta^4+
        11818373349781028079eta^3+
        347370177721463765064153eta$
        }
        \[2ex]
        h(z)&=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
        end{align*}
        \[2ex]
        f(z)=frac{1}{382112640}frac{g(eta,z)}{h(z)}
        end{gather*}

        end{document}


        enter image description here






        share|improve this answer
























        • your answer is OK, but some terms are out of pages margins.

          – Nick
          2 days ago






        • 7





          @Nick Without knowing the line width you're using it's difficult to say more.

          – egreg
          2 days ago











        • @Nick egreg's answer uses default margin of article, which is already really big. But it doesn't fit your margin?

          – JouleV
          2 days ago











        • I have moved the signs "-, +" from lines end and put them under sign "=".

          – Nick
          2 days ago














        13












        13








        13







        I suggest something line the following, so the wide terms are reduced.



        documentclass{article}
        %usepackage{amsmath}% Loaded by mathtools
        usepackage{mathtools}

        begin{document}

        begin{gather*}
        begin{align*}
        g(eta,z)&=
        parbox[t]{0.85displaywidth}{raggedright
        $-306772802511648469920eta^4z^4+
        762453974480763801600eta^5z^4-
        1678626210368271790080eta^5z^3-
        28510918043555533736160eta^4z^3+
        11443138641451067779872eta^3z^3-
        52164076923190540413504eta^2z^2-
        78145258181161076156160eta^5z^2-
        211306163712129371808450eta^4z^2+
        228927087397104405937944eta^3z^2+
        999881065017543109136462eta^3z-
        317254092617698017425280eta^5z-
        443761561344388063474665eta^4z+
        82327155732241730770824eta z-
        514623285385260545505123eta^2z-
        1010535343560043404912120eta^2-
        357788302700438191196160eta^5-
        43808044579418934376632-
        214023244873618345872240eta^4+
        11818373349781028079eta^3+
        347370177721463765064153eta$
        }
        \[2ex]
        h(z)&=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
        end{align*}
        \[2ex]
        f(z)=frac{1}{382112640}frac{g(eta,z)}{h(z)}
        end{gather*}

        end{document}


        enter image description here






        share|improve this answer













        I suggest something line the following, so the wide terms are reduced.



        documentclass{article}
        %usepackage{amsmath}% Loaded by mathtools
        usepackage{mathtools}

        begin{document}

        begin{gather*}
        begin{align*}
        g(eta,z)&=
        parbox[t]{0.85displaywidth}{raggedright
        $-306772802511648469920eta^4z^4+
        762453974480763801600eta^5z^4-
        1678626210368271790080eta^5z^3-
        28510918043555533736160eta^4z^3+
        11443138641451067779872eta^3z^3-
        52164076923190540413504eta^2z^2-
        78145258181161076156160eta^5z^2-
        211306163712129371808450eta^4z^2+
        228927087397104405937944eta^3z^2+
        999881065017543109136462eta^3z-
        317254092617698017425280eta^5z-
        443761561344388063474665eta^4z+
        82327155732241730770824eta z-
        514623285385260545505123eta^2z-
        1010535343560043404912120eta^2-
        357788302700438191196160eta^5-
        43808044579418934376632-
        214023244873618345872240eta^4+
        11818373349781028079eta^3+
        347370177721463765064153eta$
        }
        \[2ex]
        h(z)&=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
        end{align*}
        \[2ex]
        f(z)=frac{1}{382112640}frac{g(eta,z)}{h(z)}
        end{gather*}

        end{document}


        enter image description here







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered 2 days ago









        egregegreg

        732k8919303253




        732k8919303253













        • your answer is OK, but some terms are out of pages margins.

          – Nick
          2 days ago






        • 7





          @Nick Without knowing the line width you're using it's difficult to say more.

          – egreg
          2 days ago











        • @Nick egreg's answer uses default margin of article, which is already really big. But it doesn't fit your margin?

          – JouleV
          2 days ago











        • I have moved the signs "-, +" from lines end and put them under sign "=".

          – Nick
          2 days ago



















        • your answer is OK, but some terms are out of pages margins.

          – Nick
          2 days ago






        • 7





          @Nick Without knowing the line width you're using it's difficult to say more.

          – egreg
          2 days ago











        • @Nick egreg's answer uses default margin of article, which is already really big. But it doesn't fit your margin?

          – JouleV
          2 days ago











        • I have moved the signs "-, +" from lines end and put them under sign "=".

          – Nick
          2 days ago

















        your answer is OK, but some terms are out of pages margins.

        – Nick
        2 days ago





        your answer is OK, but some terms are out of pages margins.

        – Nick
        2 days ago




        7




        7





        @Nick Without knowing the line width you're using it's difficult to say more.

        – egreg
        2 days ago





        @Nick Without knowing the line width you're using it's difficult to say more.

        – egreg
        2 days ago













        @Nick egreg's answer uses default margin of article, which is already really big. But it doesn't fit your margin?

        – JouleV
        2 days ago





        @Nick egreg's answer uses default margin of article, which is already really big. But it doesn't fit your margin?

        – JouleV
        2 days ago













        I have moved the signs "-, +" from lines end and put them under sign "=".

        – Nick
        2 days ago





        I have moved the signs "-, +" from lines end and put them under sign "=".

        – Nick
        2 days ago











        6














        or



        enter image description here



        documentclass{article}
        %usepackage{amsmath}% Loaded by mathtools
        usepackage{mathtools, nccmath}
        begin{document}
        begin{multline*}medmath
        f(z)=frac{1}{382112640}
        frac{left[
        begin{multlined}
        -306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-\
        1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+\
        11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-\
        78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+\
        228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-\
        317254092617698017425280eta^5z-443761561344388063474665eta^4z+\
        82327155732241730770824eta z - 514623285385260545505123eta^2z-\
        1010535343560043404912120eta^2-357788302700438191196160eta^5-\
        43808044579418934376632-214023244873618345872240eta^4+\
        11818373349781028079eta^3+347370177721463765064153eta
        end{multlined}right]}
        {(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
        end{multline*}





        share|improve this answer




























          6














          or



          enter image description here



          documentclass{article}
          %usepackage{amsmath}% Loaded by mathtools
          usepackage{mathtools, nccmath}
          begin{document}
          begin{multline*}medmath
          f(z)=frac{1}{382112640}
          frac{left[
          begin{multlined}
          -306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-\
          1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+\
          11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-\
          78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+\
          228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-\
          317254092617698017425280eta^5z-443761561344388063474665eta^4z+\
          82327155732241730770824eta z - 514623285385260545505123eta^2z-\
          1010535343560043404912120eta^2-357788302700438191196160eta^5-\
          43808044579418934376632-214023244873618345872240eta^4+\
          11818373349781028079eta^3+347370177721463765064153eta
          end{multlined}right]}
          {(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
          end{multline*}





          share|improve this answer


























            6












            6








            6







            or



            enter image description here



            documentclass{article}
            %usepackage{amsmath}% Loaded by mathtools
            usepackage{mathtools, nccmath}
            begin{document}
            begin{multline*}medmath
            f(z)=frac{1}{382112640}
            frac{left[
            begin{multlined}
            -306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-\
            1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+\
            11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-\
            78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+\
            228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-\
            317254092617698017425280eta^5z-443761561344388063474665eta^4z+\
            82327155732241730770824eta z - 514623285385260545505123eta^2z-\
            1010535343560043404912120eta^2-357788302700438191196160eta^5-\
            43808044579418934376632-214023244873618345872240eta^4+\
            11818373349781028079eta^3+347370177721463765064153eta
            end{multlined}right]}
            {(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
            end{multline*}





            share|improve this answer













            or



            enter image description here



            documentclass{article}
            %usepackage{amsmath}% Loaded by mathtools
            usepackage{mathtools, nccmath}
            begin{document}
            begin{multline*}medmath
            f(z)=frac{1}{382112640}
            frac{left[
            begin{multlined}
            -306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-\
            1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+\
            11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-\
            78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+\
            228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-\
            317254092617698017425280eta^5z-443761561344388063474665eta^4z+\
            82327155732241730770824eta z - 514623285385260545505123eta^2z-\
            1010535343560043404912120eta^2-357788302700438191196160eta^5-\
            43808044579418934376632-214023244873618345872240eta^4+\
            11818373349781028079eta^3+347370177721463765064153eta
            end{multlined}right]}
            {(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
            end{multline*}






            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered 2 days ago









            ZarkoZarko

            129k868169




            129k868169























                6














                Given the nature of the operations, you can probably express this in a tidy manner using matrix multiplication notation, eg:





                where:





                Code:



                $$ f(z)=frac{1}{382,112,640} ; frac{g(eta, z)}{u(z) , v(z) , w(z) } $$

                where

                $$
                begin{array}{ll}
                g(eta, z) =
                begin{bmatrix}
                begin{array}{r @{hspace{0em}} r}
                - & 306,772,802,511,648,469,920 \
                & 762,453,974,480,763,801,600 \
                - & 1,678,626,210,368,271,790,080 \
                - & 28,510,918,043,555,533,736,160 \
                & 11,443,138,641,451,067,779,872 \
                - & 52,164,076,923,190,540,413,504 \
                - & 78,145,258,181,161,076,156,160 \
                - & 211,306,163,712,129,371,808,450 \
                & 228,927,087,397,104,405,937,944 \
                & 999,881,065,017,543,109,136,462 \
                - & 317,254,092,617,698,017,425,280 \
                - & 443,761,561,344,388,063,474,665 \
                & 82,327,155,732,241,730,770,824 \
                - & 514,623,285,385,260,545,505,123 \
                - & 1,010,535,343,560,043,404,912,120 \
                - & 357,788,302,700,438,191,196,160 \
                - & 43,808,044,579,418,934,376,632 \
                - & 214,023,244,873,618,345,872,240 \
                & 11,818,373,349,781,028,079 \
                & 347,370,177,721,463,765,064,153
                end{array}
                end{bmatrix}^T
                begin{bmatrix}
                begin{array}{l}
                eta^4z^4 \
                eta^5z^4 \
                eta^5z^3 \
                eta^4z^3 \
                eta^3z^3 \
                eta^2z^2 \
                eta^5z^2 \
                eta^4z^2 \
                eta^3z^2 \
                eta^3z \
                eta^5z \
                eta^4z \
                eta z \
                eta^2z \
                eta^2 \
                eta^5 \
                1 \
                eta^4 \
                eta^3 \
                eta
                end{array}
                end{bmatrix}
                &
                begin{array}{l}
                u(z) = begin{bmatrix} begin{array}{r @{hspace{0em}} r} & 417,420 \ - & 4,169,121 \ - & 15,571,312 end{array}end{bmatrix}^T begin{bmatrix} begin{array}{l} z^2 \ z \ 1 end{array}end{bmatrix}\[3em]
                v(z) = begin{bmatrix} begin{array}{r @{hspace{0em}} r} & 1,546 \ & 3,537 end{array}end{bmatrix}^T begin{bmatrix}begin{array}{l} z \ 1 end{array}end{bmatrix}\[3em]
                w(z) = begin{bmatrix}begin{array}{r @{hspace{0em}} r} & 3,092 \ & 17,001 end{array}end{bmatrix}^T begin{bmatrix}begin{array}{l} z \ 1 end{array}end{bmatrix} \[3em]
                end{array}
                end{array}
                $$




                PS. Having said that, given the nature of the numbers involved, I would also agree with Mefitico's point of view in the comments, i.e. it's best to create a variable with indices and express via a cleaner expression, and then refer to a table mapping those indices to the actual numbers involved.






                share|improve this answer





















                • 1





                  The round brackets in the definitions of $u$, $v$ and $w$ seem superfluous.

                  – jochen
                  yesterday






                • 1





                  From the point of view of someone wishing or needing to use such a polynomial, it would be helpful to insert breaks in all the long numbers to ease readability.

                  – JeremyC
                  22 hours ago











                • @jochen thanks, updated

                  – Tasos Papastylianou
                  10 hours ago











                • @JeremyC thanks, updated. I went for comma delimiters rather than breaks, as that might have been misleading in the context of matrix notation.

                  – Tasos Papastylianou
                  10 hours ago
















                6














                Given the nature of the operations, you can probably express this in a tidy manner using matrix multiplication notation, eg:





                where:





                Code:



                $$ f(z)=frac{1}{382,112,640} ; frac{g(eta, z)}{u(z) , v(z) , w(z) } $$

                where

                $$
                begin{array}{ll}
                g(eta, z) =
                begin{bmatrix}
                begin{array}{r @{hspace{0em}} r}
                - & 306,772,802,511,648,469,920 \
                & 762,453,974,480,763,801,600 \
                - & 1,678,626,210,368,271,790,080 \
                - & 28,510,918,043,555,533,736,160 \
                & 11,443,138,641,451,067,779,872 \
                - & 52,164,076,923,190,540,413,504 \
                - & 78,145,258,181,161,076,156,160 \
                - & 211,306,163,712,129,371,808,450 \
                & 228,927,087,397,104,405,937,944 \
                & 999,881,065,017,543,109,136,462 \
                - & 317,254,092,617,698,017,425,280 \
                - & 443,761,561,344,388,063,474,665 \
                & 82,327,155,732,241,730,770,824 \
                - & 514,623,285,385,260,545,505,123 \
                - & 1,010,535,343,560,043,404,912,120 \
                - & 357,788,302,700,438,191,196,160 \
                - & 43,808,044,579,418,934,376,632 \
                - & 214,023,244,873,618,345,872,240 \
                & 11,818,373,349,781,028,079 \
                & 347,370,177,721,463,765,064,153
                end{array}
                end{bmatrix}^T
                begin{bmatrix}
                begin{array}{l}
                eta^4z^4 \
                eta^5z^4 \
                eta^5z^3 \
                eta^4z^3 \
                eta^3z^3 \
                eta^2z^2 \
                eta^5z^2 \
                eta^4z^2 \
                eta^3z^2 \
                eta^3z \
                eta^5z \
                eta^4z \
                eta z \
                eta^2z \
                eta^2 \
                eta^5 \
                1 \
                eta^4 \
                eta^3 \
                eta
                end{array}
                end{bmatrix}
                &
                begin{array}{l}
                u(z) = begin{bmatrix} begin{array}{r @{hspace{0em}} r} & 417,420 \ - & 4,169,121 \ - & 15,571,312 end{array}end{bmatrix}^T begin{bmatrix} begin{array}{l} z^2 \ z \ 1 end{array}end{bmatrix}\[3em]
                v(z) = begin{bmatrix} begin{array}{r @{hspace{0em}} r} & 1,546 \ & 3,537 end{array}end{bmatrix}^T begin{bmatrix}begin{array}{l} z \ 1 end{array}end{bmatrix}\[3em]
                w(z) = begin{bmatrix}begin{array}{r @{hspace{0em}} r} & 3,092 \ & 17,001 end{array}end{bmatrix}^T begin{bmatrix}begin{array}{l} z \ 1 end{array}end{bmatrix} \[3em]
                end{array}
                end{array}
                $$




                PS. Having said that, given the nature of the numbers involved, I would also agree with Mefitico's point of view in the comments, i.e. it's best to create a variable with indices and express via a cleaner expression, and then refer to a table mapping those indices to the actual numbers involved.






                share|improve this answer





















                • 1





                  The round brackets in the definitions of $u$, $v$ and $w$ seem superfluous.

                  – jochen
                  yesterday






                • 1





                  From the point of view of someone wishing or needing to use such a polynomial, it would be helpful to insert breaks in all the long numbers to ease readability.

                  – JeremyC
                  22 hours ago











                • @jochen thanks, updated

                  – Tasos Papastylianou
                  10 hours ago











                • @JeremyC thanks, updated. I went for comma delimiters rather than breaks, as that might have been misleading in the context of matrix notation.

                  – Tasos Papastylianou
                  10 hours ago














                6












                6








                6







                Given the nature of the operations, you can probably express this in a tidy manner using matrix multiplication notation, eg:





                where:





                Code:



                $$ f(z)=frac{1}{382,112,640} ; frac{g(eta, z)}{u(z) , v(z) , w(z) } $$

                where

                $$
                begin{array}{ll}
                g(eta, z) =
                begin{bmatrix}
                begin{array}{r @{hspace{0em}} r}
                - & 306,772,802,511,648,469,920 \
                & 762,453,974,480,763,801,600 \
                - & 1,678,626,210,368,271,790,080 \
                - & 28,510,918,043,555,533,736,160 \
                & 11,443,138,641,451,067,779,872 \
                - & 52,164,076,923,190,540,413,504 \
                - & 78,145,258,181,161,076,156,160 \
                - & 211,306,163,712,129,371,808,450 \
                & 228,927,087,397,104,405,937,944 \
                & 999,881,065,017,543,109,136,462 \
                - & 317,254,092,617,698,017,425,280 \
                - & 443,761,561,344,388,063,474,665 \
                & 82,327,155,732,241,730,770,824 \
                - & 514,623,285,385,260,545,505,123 \
                - & 1,010,535,343,560,043,404,912,120 \
                - & 357,788,302,700,438,191,196,160 \
                - & 43,808,044,579,418,934,376,632 \
                - & 214,023,244,873,618,345,872,240 \
                & 11,818,373,349,781,028,079 \
                & 347,370,177,721,463,765,064,153
                end{array}
                end{bmatrix}^T
                begin{bmatrix}
                begin{array}{l}
                eta^4z^4 \
                eta^5z^4 \
                eta^5z^3 \
                eta^4z^3 \
                eta^3z^3 \
                eta^2z^2 \
                eta^5z^2 \
                eta^4z^2 \
                eta^3z^2 \
                eta^3z \
                eta^5z \
                eta^4z \
                eta z \
                eta^2z \
                eta^2 \
                eta^5 \
                1 \
                eta^4 \
                eta^3 \
                eta
                end{array}
                end{bmatrix}
                &
                begin{array}{l}
                u(z) = begin{bmatrix} begin{array}{r @{hspace{0em}} r} & 417,420 \ - & 4,169,121 \ - & 15,571,312 end{array}end{bmatrix}^T begin{bmatrix} begin{array}{l} z^2 \ z \ 1 end{array}end{bmatrix}\[3em]
                v(z) = begin{bmatrix} begin{array}{r @{hspace{0em}} r} & 1,546 \ & 3,537 end{array}end{bmatrix}^T begin{bmatrix}begin{array}{l} z \ 1 end{array}end{bmatrix}\[3em]
                w(z) = begin{bmatrix}begin{array}{r @{hspace{0em}} r} & 3,092 \ & 17,001 end{array}end{bmatrix}^T begin{bmatrix}begin{array}{l} z \ 1 end{array}end{bmatrix} \[3em]
                end{array}
                end{array}
                $$




                PS. Having said that, given the nature of the numbers involved, I would also agree with Mefitico's point of view in the comments, i.e. it's best to create a variable with indices and express via a cleaner expression, and then refer to a table mapping those indices to the actual numbers involved.






                share|improve this answer















                Given the nature of the operations, you can probably express this in a tidy manner using matrix multiplication notation, eg:





                where:





                Code:



                $$ f(z)=frac{1}{382,112,640} ; frac{g(eta, z)}{u(z) , v(z) , w(z) } $$

                where

                $$
                begin{array}{ll}
                g(eta, z) =
                begin{bmatrix}
                begin{array}{r @{hspace{0em}} r}
                - & 306,772,802,511,648,469,920 \
                & 762,453,974,480,763,801,600 \
                - & 1,678,626,210,368,271,790,080 \
                - & 28,510,918,043,555,533,736,160 \
                & 11,443,138,641,451,067,779,872 \
                - & 52,164,076,923,190,540,413,504 \
                - & 78,145,258,181,161,076,156,160 \
                - & 211,306,163,712,129,371,808,450 \
                & 228,927,087,397,104,405,937,944 \
                & 999,881,065,017,543,109,136,462 \
                - & 317,254,092,617,698,017,425,280 \
                - & 443,761,561,344,388,063,474,665 \
                & 82,327,155,732,241,730,770,824 \
                - & 514,623,285,385,260,545,505,123 \
                - & 1,010,535,343,560,043,404,912,120 \
                - & 357,788,302,700,438,191,196,160 \
                - & 43,808,044,579,418,934,376,632 \
                - & 214,023,244,873,618,345,872,240 \
                & 11,818,373,349,781,028,079 \
                & 347,370,177,721,463,765,064,153
                end{array}
                end{bmatrix}^T
                begin{bmatrix}
                begin{array}{l}
                eta^4z^4 \
                eta^5z^4 \
                eta^5z^3 \
                eta^4z^3 \
                eta^3z^3 \
                eta^2z^2 \
                eta^5z^2 \
                eta^4z^2 \
                eta^3z^2 \
                eta^3z \
                eta^5z \
                eta^4z \
                eta z \
                eta^2z \
                eta^2 \
                eta^5 \
                1 \
                eta^4 \
                eta^3 \
                eta
                end{array}
                end{bmatrix}
                &
                begin{array}{l}
                u(z) = begin{bmatrix} begin{array}{r @{hspace{0em}} r} & 417,420 \ - & 4,169,121 \ - & 15,571,312 end{array}end{bmatrix}^T begin{bmatrix} begin{array}{l} z^2 \ z \ 1 end{array}end{bmatrix}\[3em]
                v(z) = begin{bmatrix} begin{array}{r @{hspace{0em}} r} & 1,546 \ & 3,537 end{array}end{bmatrix}^T begin{bmatrix}begin{array}{l} z \ 1 end{array}end{bmatrix}\[3em]
                w(z) = begin{bmatrix}begin{array}{r @{hspace{0em}} r} & 3,092 \ & 17,001 end{array}end{bmatrix}^T begin{bmatrix}begin{array}{l} z \ 1 end{array}end{bmatrix} \[3em]
                end{array}
                end{array}
                $$




                PS. Having said that, given the nature of the numbers involved, I would also agree with Mefitico's point of view in the comments, i.e. it's best to create a variable with indices and express via a cleaner expression, and then refer to a table mapping those indices to the actual numbers involved.







                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited 10 hours ago

























                answered 2 days ago









                Tasos PapastylianouTasos Papastylianou

                327211




                327211








                • 1





                  The round brackets in the definitions of $u$, $v$ and $w$ seem superfluous.

                  – jochen
                  yesterday






                • 1





                  From the point of view of someone wishing or needing to use such a polynomial, it would be helpful to insert breaks in all the long numbers to ease readability.

                  – JeremyC
                  22 hours ago











                • @jochen thanks, updated

                  – Tasos Papastylianou
                  10 hours ago











                • @JeremyC thanks, updated. I went for comma delimiters rather than breaks, as that might have been misleading in the context of matrix notation.

                  – Tasos Papastylianou
                  10 hours ago














                • 1





                  The round brackets in the definitions of $u$, $v$ and $w$ seem superfluous.

                  – jochen
                  yesterday






                • 1





                  From the point of view of someone wishing or needing to use such a polynomial, it would be helpful to insert breaks in all the long numbers to ease readability.

                  – JeremyC
                  22 hours ago











                • @jochen thanks, updated

                  – Tasos Papastylianou
                  10 hours ago











                • @JeremyC thanks, updated. I went for comma delimiters rather than breaks, as that might have been misleading in the context of matrix notation.

                  – Tasos Papastylianou
                  10 hours ago








                1




                1





                The round brackets in the definitions of $u$, $v$ and $w$ seem superfluous.

                – jochen
                yesterday





                The round brackets in the definitions of $u$, $v$ and $w$ seem superfluous.

                – jochen
                yesterday




                1




                1





                From the point of view of someone wishing or needing to use such a polynomial, it would be helpful to insert breaks in all the long numbers to ease readability.

                – JeremyC
                22 hours ago





                From the point of view of someone wishing or needing to use such a polynomial, it would be helpful to insert breaks in all the long numbers to ease readability.

                – JeremyC
                22 hours ago













                @jochen thanks, updated

                – Tasos Papastylianou
                10 hours ago





                @jochen thanks, updated

                – Tasos Papastylianou
                10 hours ago













                @JeremyC thanks, updated. I went for comma delimiters rather than breaks, as that might have been misleading in the context of matrix notation.

                – Tasos Papastylianou
                10 hours ago





                @JeremyC thanks, updated. I went for comma delimiters rather than breaks, as that might have been misleading in the context of matrix notation.

                – Tasos Papastylianou
                10 hours ago











                2














                I recommend aligning the variables and adding some form of thousand-separators, both will enhance the readability. What I also recommend (but didn't do here) is sorting by the powers of the first and then the second variable. This is a modification of JuleV's answer.



                documentclass{article}
                %usepackage{amsmath}% Loaded by mathtools
                usepackage{mathtools}
                begin{document}
                Blah blah
                [f(z)=frac{1}{382112640}cdotfrac{A}{B}]
                where
                [
                arraycolsep=0.5pt
                begin{array}{rrllrll}
                A=&, -306,772,802,511,648,469,920 &eta^4 &z^4 & +762,453,974,480,763,801,600 &eta^5 &z^4\
                &, -1,678,626,210,368,271,790,080 &eta^5 &z^3 & -2,8510,918,043,555,533,736,160 &eta^4 &z^3\
                &, +11,443,138,641,451,067,779,872 &eta^3 &z^3 & -5,2164,076,923,190,540,413,504 &eta^2 &z^2\
                &, -78,145,258,181,161,076,156,160 &eta^5 &z^2 & -21,1306,163,712,129,371,808,450 &eta^4 &z^2\
                &, +228,927,087,397,104,405,937,944 &eta^3 &z^2 & +99,9881,065,017,543,109,136,462 &eta^3 &z\
                &, -317,254,092,617,698,017,425,280 &eta^5 &z & -44,3761,561,344,388,063,474,665 &eta^4 &z\
                &, +82,327,155,732,241,730,770,824 &eta &z & -51,4623,285,385,260,545,505,123 &eta^2 &z\
                &,-1,010,535,343,560,043,404,912,120 &eta^2 & & -35,7788,302,700,438,191,196,160 &eta^5 &\
                &, -43,808,044,579,418,934,376,632 & & & -21,4023,244,873,618,345,872,240 &eta^4 &\
                &, +11,818,373,349,781,028,079 &eta^3 & & +34,7370,177,721,463,765,064,153 &eta &
                end{array}
                ]
                and
                [B=(417,420z^2-4,169,121z-15,571,312)(1,546z+3,537)(3,092z+17,001)]
                end{document}


                I'm sure there are also some custom packages that can do this for you but this is just using the packages you provided:



                enter image description here






                share|improve this answer




























                  2














                  I recommend aligning the variables and adding some form of thousand-separators, both will enhance the readability. What I also recommend (but didn't do here) is sorting by the powers of the first and then the second variable. This is a modification of JuleV's answer.



                  documentclass{article}
                  %usepackage{amsmath}% Loaded by mathtools
                  usepackage{mathtools}
                  begin{document}
                  Blah blah
                  [f(z)=frac{1}{382112640}cdotfrac{A}{B}]
                  where
                  [
                  arraycolsep=0.5pt
                  begin{array}{rrllrll}
                  A=&, -306,772,802,511,648,469,920 &eta^4 &z^4 & +762,453,974,480,763,801,600 &eta^5 &z^4\
                  &, -1,678,626,210,368,271,790,080 &eta^5 &z^3 & -2,8510,918,043,555,533,736,160 &eta^4 &z^3\
                  &, +11,443,138,641,451,067,779,872 &eta^3 &z^3 & -5,2164,076,923,190,540,413,504 &eta^2 &z^2\
                  &, -78,145,258,181,161,076,156,160 &eta^5 &z^2 & -21,1306,163,712,129,371,808,450 &eta^4 &z^2\
                  &, +228,927,087,397,104,405,937,944 &eta^3 &z^2 & +99,9881,065,017,543,109,136,462 &eta^3 &z\
                  &, -317,254,092,617,698,017,425,280 &eta^5 &z & -44,3761,561,344,388,063,474,665 &eta^4 &z\
                  &, +82,327,155,732,241,730,770,824 &eta &z & -51,4623,285,385,260,545,505,123 &eta^2 &z\
                  &,-1,010,535,343,560,043,404,912,120 &eta^2 & & -35,7788,302,700,438,191,196,160 &eta^5 &\
                  &, -43,808,044,579,418,934,376,632 & & & -21,4023,244,873,618,345,872,240 &eta^4 &\
                  &, +11,818,373,349,781,028,079 &eta^3 & & +34,7370,177,721,463,765,064,153 &eta &
                  end{array}
                  ]
                  and
                  [B=(417,420z^2-4,169,121z-15,571,312)(1,546z+3,537)(3,092z+17,001)]
                  end{document}


                  I'm sure there are also some custom packages that can do this for you but this is just using the packages you provided:



                  enter image description here






                  share|improve this answer


























                    2












                    2








                    2







                    I recommend aligning the variables and adding some form of thousand-separators, both will enhance the readability. What I also recommend (but didn't do here) is sorting by the powers of the first and then the second variable. This is a modification of JuleV's answer.



                    documentclass{article}
                    %usepackage{amsmath}% Loaded by mathtools
                    usepackage{mathtools}
                    begin{document}
                    Blah blah
                    [f(z)=frac{1}{382112640}cdotfrac{A}{B}]
                    where
                    [
                    arraycolsep=0.5pt
                    begin{array}{rrllrll}
                    A=&, -306,772,802,511,648,469,920 &eta^4 &z^4 & +762,453,974,480,763,801,600 &eta^5 &z^4\
                    &, -1,678,626,210,368,271,790,080 &eta^5 &z^3 & -2,8510,918,043,555,533,736,160 &eta^4 &z^3\
                    &, +11,443,138,641,451,067,779,872 &eta^3 &z^3 & -5,2164,076,923,190,540,413,504 &eta^2 &z^2\
                    &, -78,145,258,181,161,076,156,160 &eta^5 &z^2 & -21,1306,163,712,129,371,808,450 &eta^4 &z^2\
                    &, +228,927,087,397,104,405,937,944 &eta^3 &z^2 & +99,9881,065,017,543,109,136,462 &eta^3 &z\
                    &, -317,254,092,617,698,017,425,280 &eta^5 &z & -44,3761,561,344,388,063,474,665 &eta^4 &z\
                    &, +82,327,155,732,241,730,770,824 &eta &z & -51,4623,285,385,260,545,505,123 &eta^2 &z\
                    &,-1,010,535,343,560,043,404,912,120 &eta^2 & & -35,7788,302,700,438,191,196,160 &eta^5 &\
                    &, -43,808,044,579,418,934,376,632 & & & -21,4023,244,873,618,345,872,240 &eta^4 &\
                    &, +11,818,373,349,781,028,079 &eta^3 & & +34,7370,177,721,463,765,064,153 &eta &
                    end{array}
                    ]
                    and
                    [B=(417,420z^2-4,169,121z-15,571,312)(1,546z+3,537)(3,092z+17,001)]
                    end{document}


                    I'm sure there are also some custom packages that can do this for you but this is just using the packages you provided:



                    enter image description here






                    share|improve this answer













                    I recommend aligning the variables and adding some form of thousand-separators, both will enhance the readability. What I also recommend (but didn't do here) is sorting by the powers of the first and then the second variable. This is a modification of JuleV's answer.



                    documentclass{article}
                    %usepackage{amsmath}% Loaded by mathtools
                    usepackage{mathtools}
                    begin{document}
                    Blah blah
                    [f(z)=frac{1}{382112640}cdotfrac{A}{B}]
                    where
                    [
                    arraycolsep=0.5pt
                    begin{array}{rrllrll}
                    A=&, -306,772,802,511,648,469,920 &eta^4 &z^4 & +762,453,974,480,763,801,600 &eta^5 &z^4\
                    &, -1,678,626,210,368,271,790,080 &eta^5 &z^3 & -2,8510,918,043,555,533,736,160 &eta^4 &z^3\
                    &, +11,443,138,641,451,067,779,872 &eta^3 &z^3 & -5,2164,076,923,190,540,413,504 &eta^2 &z^2\
                    &, -78,145,258,181,161,076,156,160 &eta^5 &z^2 & -21,1306,163,712,129,371,808,450 &eta^4 &z^2\
                    &, +228,927,087,397,104,405,937,944 &eta^3 &z^2 & +99,9881,065,017,543,109,136,462 &eta^3 &z\
                    &, -317,254,092,617,698,017,425,280 &eta^5 &z & -44,3761,561,344,388,063,474,665 &eta^4 &z\
                    &, +82,327,155,732,241,730,770,824 &eta &z & -51,4623,285,385,260,545,505,123 &eta^2 &z\
                    &,-1,010,535,343,560,043,404,912,120 &eta^2 & & -35,7788,302,700,438,191,196,160 &eta^5 &\
                    &, -43,808,044,579,418,934,376,632 & & & -21,4023,244,873,618,345,872,240 &eta^4 &\
                    &, +11,818,373,349,781,028,079 &eta^3 & & +34,7370,177,721,463,765,064,153 &eta &
                    end{array}
                    ]
                    and
                    [B=(417,420z^2-4,169,121z-15,571,312)(1,546z+3,537)(3,092z+17,001)]
                    end{document}


                    I'm sure there are also some custom packages that can do this for you but this is just using the packages you provided:



                    enter image description here







                    share|improve this answer












                    share|improve this answer



                    share|improve this answer










                    answered 2 days ago









                    flawrflawr

                    527413




                    527413























                        0














                        I would usually use the package breqn. That automatically line-breaks equations, and has a lot of very nice features, but uses low-level having into the maths primitives, which means it tends to make a mess of other packages what do the same thing (for example, you can't use both breqn and sansmath in the same document)



                        begin{dmath*}
                        f(z)=frac{1}{382112640}times-306772802511648469920eta^4z^4+left(762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028079eta^3+347370177721463765064153etaright)timesleft(left(417420z^2-4169121z-15571312right)left(1546z+3537right)left(3092z+17001right)right)^{-1}
                        end{dmath*}


                        which produces this huge equation



                        IMO the right-alignment is ugly but apparently that's the AMS standard - without the brackets it left aligns all those lines like the alginat version.






                        share|improve this answer




























                          0














                          I would usually use the package breqn. That automatically line-breaks equations, and has a lot of very nice features, but uses low-level having into the maths primitives, which means it tends to make a mess of other packages what do the same thing (for example, you can't use both breqn and sansmath in the same document)



                          begin{dmath*}
                          f(z)=frac{1}{382112640}times-306772802511648469920eta^4z^4+left(762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028079eta^3+347370177721463765064153etaright)timesleft(left(417420z^2-4169121z-15571312right)left(1546z+3537right)left(3092z+17001right)right)^{-1}
                          end{dmath*}


                          which produces this huge equation



                          IMO the right-alignment is ugly but apparently that's the AMS standard - without the brackets it left aligns all those lines like the alginat version.






                          share|improve this answer


























                            0












                            0








                            0







                            I would usually use the package breqn. That automatically line-breaks equations, and has a lot of very nice features, but uses low-level having into the maths primitives, which means it tends to make a mess of other packages what do the same thing (for example, you can't use both breqn and sansmath in the same document)



                            begin{dmath*}
                            f(z)=frac{1}{382112640}times-306772802511648469920eta^4z^4+left(762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028079eta^3+347370177721463765064153etaright)timesleft(left(417420z^2-4169121z-15571312right)left(1546z+3537right)left(3092z+17001right)right)^{-1}
                            end{dmath*}


                            which produces this huge equation



                            IMO the right-alignment is ugly but apparently that's the AMS standard - without the brackets it left aligns all those lines like the alginat version.






                            share|improve this answer













                            I would usually use the package breqn. That automatically line-breaks equations, and has a lot of very nice features, but uses low-level having into the maths primitives, which means it tends to make a mess of other packages what do the same thing (for example, you can't use both breqn and sansmath in the same document)



                            begin{dmath*}
                            f(z)=frac{1}{382112640}times-306772802511648469920eta^4z^4+left(762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028079eta^3+347370177721463765064153etaright)timesleft(left(417420z^2-4169121z-15571312right)left(1546z+3537right)left(3092z+17001right)right)^{-1}
                            end{dmath*}


                            which produces this huge equation



                            IMO the right-alignment is ugly but apparently that's the AMS standard - without the brackets it left aligns all those lines like the alginat version.







                            share|improve this answer












                            share|improve this answer



                            share|improve this answer










                            answered 2 days ago









                            PhilipPhilip

                            235




                            235























                                0














                                Following the original disposition of the function, but using alignat, parenthesis, and fractions to emphasize its different terms.



                                documentclass{article}

                                usepackage{mathtools}

                                begin{document}

                                begin{alignat*}{2}
                                & f(z) && = frac{1}{382112640} times left( vphantom{frac{1}{382112640}} -306772802511648469920 eta^4 z^4 + 762453974480763801600 eta^5 z^4 right. \[1.5ex]
                                & && -1678626210368271790080 eta^5 z^3 -28510918043555533736160 eta^4 z^3 \[1.5ex]
                                & && +11443138641451067779872 eta^3 z^3 -52164076923190540413504 eta^2 z^2 \[1.5ex]
                                & && -78145258181161076156160 eta^5 z^2 -211306163712129371808450 eta^4 z^2 \[1.5ex]
                                & && +228927087397104405937944 eta^3 z^2 +999881065017543109136462 eta^3 z \[1.5ex]
                                & && -317254092617698017425280 eta^5 z -443761561344388063474665 eta^4 z \[1.5ex]
                                & && +82327155732241730770824 eta z -514623285385260545505123 eta^2 z \[1.5ex]
                                & && -1010535343560043404912120 eta^2 -357788302700438191196160 eta^5 \[1.5ex]
                                & && -43808044579418934376632 -214023244873618345872240 eta^4 \[1.5ex]
                                & && +11818373349781028079 eta^3 +347370177721463765064153eta left. vphantom{frac{1}{382112640}} right) \[1.5ex]
                                & && times frac{1}{(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
                                end{alignat*}

                                end{document}


                                fig






                                share|improve this answer


























                                • Do you think this fits the page margin?

                                  – JouleV
                                  2 days ago











                                • It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.

                                  – Andre
                                  2 days ago













                                • In the original question, the term 417420z^2-4169121z-15571312 is in denominator, not in the numerator as you place it.

                                  – quark67
                                  yesterday











                                • OK. I will revise this.

                                  – Andre
                                  18 hours ago











                                • Revised the members of the last fraction. Also added a line for the last term (which also ensures that the display will fit the margins).

                                  – Andre
                                  16 hours ago


















                                0














                                Following the original disposition of the function, but using alignat, parenthesis, and fractions to emphasize its different terms.



                                documentclass{article}

                                usepackage{mathtools}

                                begin{document}

                                begin{alignat*}{2}
                                & f(z) && = frac{1}{382112640} times left( vphantom{frac{1}{382112640}} -306772802511648469920 eta^4 z^4 + 762453974480763801600 eta^5 z^4 right. \[1.5ex]
                                & && -1678626210368271790080 eta^5 z^3 -28510918043555533736160 eta^4 z^3 \[1.5ex]
                                & && +11443138641451067779872 eta^3 z^3 -52164076923190540413504 eta^2 z^2 \[1.5ex]
                                & && -78145258181161076156160 eta^5 z^2 -211306163712129371808450 eta^4 z^2 \[1.5ex]
                                & && +228927087397104405937944 eta^3 z^2 +999881065017543109136462 eta^3 z \[1.5ex]
                                & && -317254092617698017425280 eta^5 z -443761561344388063474665 eta^4 z \[1.5ex]
                                & && +82327155732241730770824 eta z -514623285385260545505123 eta^2 z \[1.5ex]
                                & && -1010535343560043404912120 eta^2 -357788302700438191196160 eta^5 \[1.5ex]
                                & && -43808044579418934376632 -214023244873618345872240 eta^4 \[1.5ex]
                                & && +11818373349781028079 eta^3 +347370177721463765064153eta left. vphantom{frac{1}{382112640}} right) \[1.5ex]
                                & && times frac{1}{(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
                                end{alignat*}

                                end{document}


                                fig






                                share|improve this answer


























                                • Do you think this fits the page margin?

                                  – JouleV
                                  2 days ago











                                • It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.

                                  – Andre
                                  2 days ago













                                • In the original question, the term 417420z^2-4169121z-15571312 is in denominator, not in the numerator as you place it.

                                  – quark67
                                  yesterday











                                • OK. I will revise this.

                                  – Andre
                                  18 hours ago











                                • Revised the members of the last fraction. Also added a line for the last term (which also ensures that the display will fit the margins).

                                  – Andre
                                  16 hours ago
















                                0












                                0








                                0







                                Following the original disposition of the function, but using alignat, parenthesis, and fractions to emphasize its different terms.



                                documentclass{article}

                                usepackage{mathtools}

                                begin{document}

                                begin{alignat*}{2}
                                & f(z) && = frac{1}{382112640} times left( vphantom{frac{1}{382112640}} -306772802511648469920 eta^4 z^4 + 762453974480763801600 eta^5 z^4 right. \[1.5ex]
                                & && -1678626210368271790080 eta^5 z^3 -28510918043555533736160 eta^4 z^3 \[1.5ex]
                                & && +11443138641451067779872 eta^3 z^3 -52164076923190540413504 eta^2 z^2 \[1.5ex]
                                & && -78145258181161076156160 eta^5 z^2 -211306163712129371808450 eta^4 z^2 \[1.5ex]
                                & && +228927087397104405937944 eta^3 z^2 +999881065017543109136462 eta^3 z \[1.5ex]
                                & && -317254092617698017425280 eta^5 z -443761561344388063474665 eta^4 z \[1.5ex]
                                & && +82327155732241730770824 eta z -514623285385260545505123 eta^2 z \[1.5ex]
                                & && -1010535343560043404912120 eta^2 -357788302700438191196160 eta^5 \[1.5ex]
                                & && -43808044579418934376632 -214023244873618345872240 eta^4 \[1.5ex]
                                & && +11818373349781028079 eta^3 +347370177721463765064153eta left. vphantom{frac{1}{382112640}} right) \[1.5ex]
                                & && times frac{1}{(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
                                end{alignat*}

                                end{document}


                                fig






                                share|improve this answer















                                Following the original disposition of the function, but using alignat, parenthesis, and fractions to emphasize its different terms.



                                documentclass{article}

                                usepackage{mathtools}

                                begin{document}

                                begin{alignat*}{2}
                                & f(z) && = frac{1}{382112640} times left( vphantom{frac{1}{382112640}} -306772802511648469920 eta^4 z^4 + 762453974480763801600 eta^5 z^4 right. \[1.5ex]
                                & && -1678626210368271790080 eta^5 z^3 -28510918043555533736160 eta^4 z^3 \[1.5ex]
                                & && +11443138641451067779872 eta^3 z^3 -52164076923190540413504 eta^2 z^2 \[1.5ex]
                                & && -78145258181161076156160 eta^5 z^2 -211306163712129371808450 eta^4 z^2 \[1.5ex]
                                & && +228927087397104405937944 eta^3 z^2 +999881065017543109136462 eta^3 z \[1.5ex]
                                & && -317254092617698017425280 eta^5 z -443761561344388063474665 eta^4 z \[1.5ex]
                                & && +82327155732241730770824 eta z -514623285385260545505123 eta^2 z \[1.5ex]
                                & && -1010535343560043404912120 eta^2 -357788302700438191196160 eta^5 \[1.5ex]
                                & && -43808044579418934376632 -214023244873618345872240 eta^4 \[1.5ex]
                                & && +11818373349781028079 eta^3 +347370177721463765064153eta left. vphantom{frac{1}{382112640}} right) \[1.5ex]
                                & && times frac{1}{(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
                                end{alignat*}

                                end{document}


                                fig







                                share|improve this answer














                                share|improve this answer



                                share|improve this answer








                                edited 16 hours ago

























                                answered 2 days ago









                                AndreAndre

                                1768




                                1768













                                • Do you think this fits the page margin?

                                  – JouleV
                                  2 days ago











                                • It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.

                                  – Andre
                                  2 days ago













                                • In the original question, the term 417420z^2-4169121z-15571312 is in denominator, not in the numerator as you place it.

                                  – quark67
                                  yesterday











                                • OK. I will revise this.

                                  – Andre
                                  18 hours ago











                                • Revised the members of the last fraction. Also added a line for the last term (which also ensures that the display will fit the margins).

                                  – Andre
                                  16 hours ago





















                                • Do you think this fits the page margin?

                                  – JouleV
                                  2 days ago











                                • It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.

                                  – Andre
                                  2 days ago













                                • In the original question, the term 417420z^2-4169121z-15571312 is in denominator, not in the numerator as you place it.

                                  – quark67
                                  yesterday











                                • OK. I will revise this.

                                  – Andre
                                  18 hours ago











                                • Revised the members of the last fraction. Also added a line for the last term (which also ensures that the display will fit the margins).

                                  – Andre
                                  16 hours ago



















                                Do you think this fits the page margin?

                                – JouleV
                                2 days ago





                                Do you think this fits the page margin?

                                – JouleV
                                2 days ago













                                It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.

                                – Andre
                                2 days ago







                                It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.

                                – Andre
                                2 days ago















                                In the original question, the term 417420z^2-4169121z-15571312 is in denominator, not in the numerator as you place it.

                                – quark67
                                yesterday





                                In the original question, the term 417420z^2-4169121z-15571312 is in denominator, not in the numerator as you place it.

                                – quark67
                                yesterday













                                OK. I will revise this.

                                – Andre
                                18 hours ago





                                OK. I will revise this.

                                – Andre
                                18 hours ago













                                Revised the members of the last fraction. Also added a line for the last term (which also ensures that the display will fit the margins).

                                – Andre
                                16 hours ago







                                Revised the members of the last fraction. Also added a line for the last term (which also ensures that the display will fit the margins).

                                – Andre
                                16 hours ago




















                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f483300%2fhow-to-format-a-long-polynomial%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                數位音樂下載

                                When can things happen in Etherscan, such as the picture below?

                                格利澤436b