Limit for $e$ and $frac{1}{e}$
$begingroup$
My question concerns the derivation of this: $$e^r = lim_{n rightarrow infty} left(1 + frac{r}{n}right)^n ...(1).$$
One of the definitions of $e$ is as follows:
$$e = lim_{n rightarrow infty} left(1+frac{1}{n}right)^n.$$
Then, textbooks usually derive equation (1) in the following manner:
begin{align}
lim_{n rightarrow infty} left(1 + frac{r}{n}right)^n &= lim_{u rightarrow infty} left(1 + frac{1}{u}right)^{ru} text{where} u = frac{n}{r}\
&= lim_{u rightarrow infty} left(left(1 + frac{1}{u}right)^uright)^r \
&= left(lim_{u rightarrow infty} left(1 + frac{1}{u}right)^uright)^r \
&= e^r.
end{align}
This argument is fine if $r > 0$ since $u rightarrow infty$ as $n rightarrow infty$, but when $r < 0$, $u rightarrow - infty$ as $n rightarrow infty$.
How can I extend the proof for (1) where $r$ is any real number?
When $r = 0$, $lim_{n rightarrow infty} (1+0/n)^n = 1$ (Although, I should be careful about evaluating limits that look like $``1^{infty}"$.)
Here's my attempt so far for the case where $r < 0$:
begin{align}
lim_{n rightarrow infty} left(1 + frac{r}{n}right)^n &= lim_{u rightarrow infty} left(1 - frac{1}{u}right)^{-ru} text{where} u = -frac{n}{r} \
&= left(lim_{u rightarrow infty} left(1 - frac{1}{u}right)^uright)^{-r}.
end{align}
My question boils down to how to show the following limit from the definition above for $e$ $$lim_{n rightarrow infty} left(1 - frac{1}{n}right)^n = frac{1}{e}.$$
Thanks.
calculus limits
$endgroup$
add a comment |
$begingroup$
My question concerns the derivation of this: $$e^r = lim_{n rightarrow infty} left(1 + frac{r}{n}right)^n ...(1).$$
One of the definitions of $e$ is as follows:
$$e = lim_{n rightarrow infty} left(1+frac{1}{n}right)^n.$$
Then, textbooks usually derive equation (1) in the following manner:
begin{align}
lim_{n rightarrow infty} left(1 + frac{r}{n}right)^n &= lim_{u rightarrow infty} left(1 + frac{1}{u}right)^{ru} text{where} u = frac{n}{r}\
&= lim_{u rightarrow infty} left(left(1 + frac{1}{u}right)^uright)^r \
&= left(lim_{u rightarrow infty} left(1 + frac{1}{u}right)^uright)^r \
&= e^r.
end{align}
This argument is fine if $r > 0$ since $u rightarrow infty$ as $n rightarrow infty$, but when $r < 0$, $u rightarrow - infty$ as $n rightarrow infty$.
How can I extend the proof for (1) where $r$ is any real number?
When $r = 0$, $lim_{n rightarrow infty} (1+0/n)^n = 1$ (Although, I should be careful about evaluating limits that look like $``1^{infty}"$.)
Here's my attempt so far for the case where $r < 0$:
begin{align}
lim_{n rightarrow infty} left(1 + frac{r}{n}right)^n &= lim_{u rightarrow infty} left(1 - frac{1}{u}right)^{-ru} text{where} u = -frac{n}{r} \
&= left(lim_{u rightarrow infty} left(1 - frac{1}{u}right)^uright)^{-r}.
end{align}
My question boils down to how to show the following limit from the definition above for $e$ $$lim_{n rightarrow infty} left(1 - frac{1}{n}right)^n = frac{1}{e}.$$
Thanks.
calculus limits
$endgroup$
1
$begingroup$
Isn't the last limit $limlimits_{n rightarrow infty} left (1 - frac 1 n right )^n = frac {1} {e}$?
$endgroup$
– Dbchatto67
yesterday
$begingroup$
The substitution is still valid for $rlt0$ because the bracket contains a number $lt1$.
$endgroup$
– Peter Foreman
yesterday
1
$begingroup$
Side note: no need to be careful for $r=0$. You have $(1+0/n)^n=1$ for all $n$.
$endgroup$
– Dirk
yesterday
add a comment |
$begingroup$
My question concerns the derivation of this: $$e^r = lim_{n rightarrow infty} left(1 + frac{r}{n}right)^n ...(1).$$
One of the definitions of $e$ is as follows:
$$e = lim_{n rightarrow infty} left(1+frac{1}{n}right)^n.$$
Then, textbooks usually derive equation (1) in the following manner:
begin{align}
lim_{n rightarrow infty} left(1 + frac{r}{n}right)^n &= lim_{u rightarrow infty} left(1 + frac{1}{u}right)^{ru} text{where} u = frac{n}{r}\
&= lim_{u rightarrow infty} left(left(1 + frac{1}{u}right)^uright)^r \
&= left(lim_{u rightarrow infty} left(1 + frac{1}{u}right)^uright)^r \
&= e^r.
end{align}
This argument is fine if $r > 0$ since $u rightarrow infty$ as $n rightarrow infty$, but when $r < 0$, $u rightarrow - infty$ as $n rightarrow infty$.
How can I extend the proof for (1) where $r$ is any real number?
When $r = 0$, $lim_{n rightarrow infty} (1+0/n)^n = 1$ (Although, I should be careful about evaluating limits that look like $``1^{infty}"$.)
Here's my attempt so far for the case where $r < 0$:
begin{align}
lim_{n rightarrow infty} left(1 + frac{r}{n}right)^n &= lim_{u rightarrow infty} left(1 - frac{1}{u}right)^{-ru} text{where} u = -frac{n}{r} \
&= left(lim_{u rightarrow infty} left(1 - frac{1}{u}right)^uright)^{-r}.
end{align}
My question boils down to how to show the following limit from the definition above for $e$ $$lim_{n rightarrow infty} left(1 - frac{1}{n}right)^n = frac{1}{e}.$$
Thanks.
calculus limits
$endgroup$
My question concerns the derivation of this: $$e^r = lim_{n rightarrow infty} left(1 + frac{r}{n}right)^n ...(1).$$
One of the definitions of $e$ is as follows:
$$e = lim_{n rightarrow infty} left(1+frac{1}{n}right)^n.$$
Then, textbooks usually derive equation (1) in the following manner:
begin{align}
lim_{n rightarrow infty} left(1 + frac{r}{n}right)^n &= lim_{u rightarrow infty} left(1 + frac{1}{u}right)^{ru} text{where} u = frac{n}{r}\
&= lim_{u rightarrow infty} left(left(1 + frac{1}{u}right)^uright)^r \
&= left(lim_{u rightarrow infty} left(1 + frac{1}{u}right)^uright)^r \
&= e^r.
end{align}
This argument is fine if $r > 0$ since $u rightarrow infty$ as $n rightarrow infty$, but when $r < 0$, $u rightarrow - infty$ as $n rightarrow infty$.
How can I extend the proof for (1) where $r$ is any real number?
When $r = 0$, $lim_{n rightarrow infty} (1+0/n)^n = 1$ (Although, I should be careful about evaluating limits that look like $``1^{infty}"$.)
Here's my attempt so far for the case where $r < 0$:
begin{align}
lim_{n rightarrow infty} left(1 + frac{r}{n}right)^n &= lim_{u rightarrow infty} left(1 - frac{1}{u}right)^{-ru} text{where} u = -frac{n}{r} \
&= left(lim_{u rightarrow infty} left(1 - frac{1}{u}right)^uright)^{-r}.
end{align}
My question boils down to how to show the following limit from the definition above for $e$ $$lim_{n rightarrow infty} left(1 - frac{1}{n}right)^n = frac{1}{e}.$$
Thanks.
calculus limits
calculus limits
edited yesterday
YuiTo Cheng
2,43841037
2,43841037
asked yesterday
VishnuramVishnuram
534
534
1
$begingroup$
Isn't the last limit $limlimits_{n rightarrow infty} left (1 - frac 1 n right )^n = frac {1} {e}$?
$endgroup$
– Dbchatto67
yesterday
$begingroup$
The substitution is still valid for $rlt0$ because the bracket contains a number $lt1$.
$endgroup$
– Peter Foreman
yesterday
1
$begingroup$
Side note: no need to be careful for $r=0$. You have $(1+0/n)^n=1$ for all $n$.
$endgroup$
– Dirk
yesterday
add a comment |
1
$begingroup$
Isn't the last limit $limlimits_{n rightarrow infty} left (1 - frac 1 n right )^n = frac {1} {e}$?
$endgroup$
– Dbchatto67
yesterday
$begingroup$
The substitution is still valid for $rlt0$ because the bracket contains a number $lt1$.
$endgroup$
– Peter Foreman
yesterday
1
$begingroup$
Side note: no need to be careful for $r=0$. You have $(1+0/n)^n=1$ for all $n$.
$endgroup$
– Dirk
yesterday
1
1
$begingroup$
Isn't the last limit $limlimits_{n rightarrow infty} left (1 - frac 1 n right )^n = frac {1} {e}$?
$endgroup$
– Dbchatto67
yesterday
$begingroup$
Isn't the last limit $limlimits_{n rightarrow infty} left (1 - frac 1 n right )^n = frac {1} {e}$?
$endgroup$
– Dbchatto67
yesterday
$begingroup$
The substitution is still valid for $rlt0$ because the bracket contains a number $lt1$.
$endgroup$
– Peter Foreman
yesterday
$begingroup$
The substitution is still valid for $rlt0$ because the bracket contains a number $lt1$.
$endgroup$
– Peter Foreman
yesterday
1
1
$begingroup$
Side note: no need to be careful for $r=0$. You have $(1+0/n)^n=1$ for all $n$.
$endgroup$
– Dirk
yesterday
$begingroup$
Side note: no need to be careful for $r=0$. You have $(1+0/n)^n=1$ for all $n$.
$endgroup$
– Dirk
yesterday
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
begin{align*}lim_{ntoinfty}left( 1 - frac{1}{n} right)^n &= lim_{ntoinfty}left(frac{n-1}{n}right)^n = lim_{ntoinfty}left(frac{1}{frac{n}{n-1}}right)^n = lim_{ntoinfty}frac{1}{left(frac{n}{n-1}right)^n} \ &= lim_{ntoinfty}frac{1}{left(1 + frac{1}{n-1}right)^n} = lim_{ntoinfty} left(frac{1}{left(1 + frac{1}{n-1}right)^{n-1}} cdot frac{1}{1 + frac{1}{n-1}} right) \
&= lim_{ntoinfty} frac{1}{left(1 + frac{1}{n-1}right)^{n-1}} = lim_{ntoinfty} frac{1}{left(1 + frac{1}{n}right)^{n}} = frac{1}{e} \
&= e^{-1}
end{align*}
$endgroup$
$begingroup$
Lee Mosher.Very nice!
$endgroup$
– Peter Szilas
23 hours ago
add a comment |
$begingroup$
Consider proving the reciprocal, i.e.
$$
lim left(1 - frac 1nright)^{-n} = mathrm e.
$$
The expression inside could be rewritten as
$$
left(1 - frac 1n right)^{-n} = left(frac {n-1}nright)^{-n} = left(frac n{n-1}right)^n = left(1 + frac 1{n-1}right)^n = left(1 + frac 1{n-1}right)^{n-1} cdot left(1 + frac 1{n-1}right).
$$
Now use the definition of $mathrm e$:
$$
lim_n left(1 + frac 1{n-1}right)^{n-1} = mathrm e.
$$
Since
$$
lim_n left(1 + frac 1{n-1}right) = 1,
$$
we conclude that
$$
lim_n left(1 - frac 1n right)^{-n} = lim_n left(1 + frac 1{n-1}right)^{n-1} cdot lim_n left(1 + frac 1{n-1}right) = mathrm e cdot 1 = mathrm e.
$$
by the law of arithmetic operations of limits.
Therefore the original limit is $1/mathrm e$.
$endgroup$
add a comment |
$begingroup$
Let $P= left (1 - frac 1 n right )^n.$ Then $ln P = frac {ln left (1 - frac 1 n right )} {frac 1 n}. (*)$
Now as $n rightarrow infty$ then $(*)$ is a $frac 0 0$ form. Applying L'Hospital we have $$begin{align*} limlimits_{n rightarrow infty} ln P & = limlimits_{n rightarrow infty} frac {frac {1} {left (1 - frac 1 n right )} cdot frac {1} {n^2}} {-frac {1} {n^2}}. \ & = - limlimits_{n rightarrow infty} frac {1} {left (1 - frac 1 n right )}. \ & = -1. end{align*}$$
This shows that $$limlimits_{n rightarrow infty} P =limlimits_{n rightarrow infty} left (1 - frac 1 n right )^n = frac 1 e.$$
$endgroup$
add a comment |
$begingroup$
The easiest way, working for all $r in mathbb{R}$, is to write
$$left( 1+ frac{r}{n}right)^n =exp left( n ln left( 1+ frac{r}{n}right)right) = exp left( n left( frac{r}{n} + oleft( frac{1}{n}right) right)right) = exp left( r + oleft( 1right) right)$$
So it converges to $exp(r)$.
$endgroup$
add a comment |
$begingroup$
$f(x):=log x;$
$f'(1)= lim_{n rightarrow infty}dfrac{f(1-1/n)-f(1)}{-(1/n)}$;
Hence
$lim_{n rightarrow infty} (nlog(1-1/n)-log 1)=$
$lim_{n rightarrow infty} (-dfrac{log (1-1/n)-log 1}{-(1/n)})=- log '(1)=-1$
Then
$lim_{n rightarrow infty} exp n(log (1-1/n))=$
$exp (lim_{n rightarrow infty} nlog (1-1/n))=$
$exp (-1)$.
Used: Continuity of $exp$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3187576%2flimit-for-e-and-frac1e%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
begin{align*}lim_{ntoinfty}left( 1 - frac{1}{n} right)^n &= lim_{ntoinfty}left(frac{n-1}{n}right)^n = lim_{ntoinfty}left(frac{1}{frac{n}{n-1}}right)^n = lim_{ntoinfty}frac{1}{left(frac{n}{n-1}right)^n} \ &= lim_{ntoinfty}frac{1}{left(1 + frac{1}{n-1}right)^n} = lim_{ntoinfty} left(frac{1}{left(1 + frac{1}{n-1}right)^{n-1}} cdot frac{1}{1 + frac{1}{n-1}} right) \
&= lim_{ntoinfty} frac{1}{left(1 + frac{1}{n-1}right)^{n-1}} = lim_{ntoinfty} frac{1}{left(1 + frac{1}{n}right)^{n}} = frac{1}{e} \
&= e^{-1}
end{align*}
$endgroup$
$begingroup$
Lee Mosher.Very nice!
$endgroup$
– Peter Szilas
23 hours ago
add a comment |
$begingroup$
begin{align*}lim_{ntoinfty}left( 1 - frac{1}{n} right)^n &= lim_{ntoinfty}left(frac{n-1}{n}right)^n = lim_{ntoinfty}left(frac{1}{frac{n}{n-1}}right)^n = lim_{ntoinfty}frac{1}{left(frac{n}{n-1}right)^n} \ &= lim_{ntoinfty}frac{1}{left(1 + frac{1}{n-1}right)^n} = lim_{ntoinfty} left(frac{1}{left(1 + frac{1}{n-1}right)^{n-1}} cdot frac{1}{1 + frac{1}{n-1}} right) \
&= lim_{ntoinfty} frac{1}{left(1 + frac{1}{n-1}right)^{n-1}} = lim_{ntoinfty} frac{1}{left(1 + frac{1}{n}right)^{n}} = frac{1}{e} \
&= e^{-1}
end{align*}
$endgroup$
$begingroup$
Lee Mosher.Very nice!
$endgroup$
– Peter Szilas
23 hours ago
add a comment |
$begingroup$
begin{align*}lim_{ntoinfty}left( 1 - frac{1}{n} right)^n &= lim_{ntoinfty}left(frac{n-1}{n}right)^n = lim_{ntoinfty}left(frac{1}{frac{n}{n-1}}right)^n = lim_{ntoinfty}frac{1}{left(frac{n}{n-1}right)^n} \ &= lim_{ntoinfty}frac{1}{left(1 + frac{1}{n-1}right)^n} = lim_{ntoinfty} left(frac{1}{left(1 + frac{1}{n-1}right)^{n-1}} cdot frac{1}{1 + frac{1}{n-1}} right) \
&= lim_{ntoinfty} frac{1}{left(1 + frac{1}{n-1}right)^{n-1}} = lim_{ntoinfty} frac{1}{left(1 + frac{1}{n}right)^{n}} = frac{1}{e} \
&= e^{-1}
end{align*}
$endgroup$
begin{align*}lim_{ntoinfty}left( 1 - frac{1}{n} right)^n &= lim_{ntoinfty}left(frac{n-1}{n}right)^n = lim_{ntoinfty}left(frac{1}{frac{n}{n-1}}right)^n = lim_{ntoinfty}frac{1}{left(frac{n}{n-1}right)^n} \ &= lim_{ntoinfty}frac{1}{left(1 + frac{1}{n-1}right)^n} = lim_{ntoinfty} left(frac{1}{left(1 + frac{1}{n-1}right)^{n-1}} cdot frac{1}{1 + frac{1}{n-1}} right) \
&= lim_{ntoinfty} frac{1}{left(1 + frac{1}{n-1}right)^{n-1}} = lim_{ntoinfty} frac{1}{left(1 + frac{1}{n}right)^{n}} = frac{1}{e} \
&= e^{-1}
end{align*}
answered yesterday
Lee MosherLee Mosher
52.4k33891
52.4k33891
$begingroup$
Lee Mosher.Very nice!
$endgroup$
– Peter Szilas
23 hours ago
add a comment |
$begingroup$
Lee Mosher.Very nice!
$endgroup$
– Peter Szilas
23 hours ago
$begingroup$
Lee Mosher.Very nice!
$endgroup$
– Peter Szilas
23 hours ago
$begingroup$
Lee Mosher.Very nice!
$endgroup$
– Peter Szilas
23 hours ago
add a comment |
$begingroup$
Consider proving the reciprocal, i.e.
$$
lim left(1 - frac 1nright)^{-n} = mathrm e.
$$
The expression inside could be rewritten as
$$
left(1 - frac 1n right)^{-n} = left(frac {n-1}nright)^{-n} = left(frac n{n-1}right)^n = left(1 + frac 1{n-1}right)^n = left(1 + frac 1{n-1}right)^{n-1} cdot left(1 + frac 1{n-1}right).
$$
Now use the definition of $mathrm e$:
$$
lim_n left(1 + frac 1{n-1}right)^{n-1} = mathrm e.
$$
Since
$$
lim_n left(1 + frac 1{n-1}right) = 1,
$$
we conclude that
$$
lim_n left(1 - frac 1n right)^{-n} = lim_n left(1 + frac 1{n-1}right)^{n-1} cdot lim_n left(1 + frac 1{n-1}right) = mathrm e cdot 1 = mathrm e.
$$
by the law of arithmetic operations of limits.
Therefore the original limit is $1/mathrm e$.
$endgroup$
add a comment |
$begingroup$
Consider proving the reciprocal, i.e.
$$
lim left(1 - frac 1nright)^{-n} = mathrm e.
$$
The expression inside could be rewritten as
$$
left(1 - frac 1n right)^{-n} = left(frac {n-1}nright)^{-n} = left(frac n{n-1}right)^n = left(1 + frac 1{n-1}right)^n = left(1 + frac 1{n-1}right)^{n-1} cdot left(1 + frac 1{n-1}right).
$$
Now use the definition of $mathrm e$:
$$
lim_n left(1 + frac 1{n-1}right)^{n-1} = mathrm e.
$$
Since
$$
lim_n left(1 + frac 1{n-1}right) = 1,
$$
we conclude that
$$
lim_n left(1 - frac 1n right)^{-n} = lim_n left(1 + frac 1{n-1}right)^{n-1} cdot lim_n left(1 + frac 1{n-1}right) = mathrm e cdot 1 = mathrm e.
$$
by the law of arithmetic operations of limits.
Therefore the original limit is $1/mathrm e$.
$endgroup$
add a comment |
$begingroup$
Consider proving the reciprocal, i.e.
$$
lim left(1 - frac 1nright)^{-n} = mathrm e.
$$
The expression inside could be rewritten as
$$
left(1 - frac 1n right)^{-n} = left(frac {n-1}nright)^{-n} = left(frac n{n-1}right)^n = left(1 + frac 1{n-1}right)^n = left(1 + frac 1{n-1}right)^{n-1} cdot left(1 + frac 1{n-1}right).
$$
Now use the definition of $mathrm e$:
$$
lim_n left(1 + frac 1{n-1}right)^{n-1} = mathrm e.
$$
Since
$$
lim_n left(1 + frac 1{n-1}right) = 1,
$$
we conclude that
$$
lim_n left(1 - frac 1n right)^{-n} = lim_n left(1 + frac 1{n-1}right)^{n-1} cdot lim_n left(1 + frac 1{n-1}right) = mathrm e cdot 1 = mathrm e.
$$
by the law of arithmetic operations of limits.
Therefore the original limit is $1/mathrm e$.
$endgroup$
Consider proving the reciprocal, i.e.
$$
lim left(1 - frac 1nright)^{-n} = mathrm e.
$$
The expression inside could be rewritten as
$$
left(1 - frac 1n right)^{-n} = left(frac {n-1}nright)^{-n} = left(frac n{n-1}right)^n = left(1 + frac 1{n-1}right)^n = left(1 + frac 1{n-1}right)^{n-1} cdot left(1 + frac 1{n-1}right).
$$
Now use the definition of $mathrm e$:
$$
lim_n left(1 + frac 1{n-1}right)^{n-1} = mathrm e.
$$
Since
$$
lim_n left(1 + frac 1{n-1}right) = 1,
$$
we conclude that
$$
lim_n left(1 - frac 1n right)^{-n} = lim_n left(1 + frac 1{n-1}right)^{n-1} cdot lim_n left(1 + frac 1{n-1}right) = mathrm e cdot 1 = mathrm e.
$$
by the law of arithmetic operations of limits.
Therefore the original limit is $1/mathrm e$.
answered yesterday
xbhxbh
6,3701522
6,3701522
add a comment |
add a comment |
$begingroup$
Let $P= left (1 - frac 1 n right )^n.$ Then $ln P = frac {ln left (1 - frac 1 n right )} {frac 1 n}. (*)$
Now as $n rightarrow infty$ then $(*)$ is a $frac 0 0$ form. Applying L'Hospital we have $$begin{align*} limlimits_{n rightarrow infty} ln P & = limlimits_{n rightarrow infty} frac {frac {1} {left (1 - frac 1 n right )} cdot frac {1} {n^2}} {-frac {1} {n^2}}. \ & = - limlimits_{n rightarrow infty} frac {1} {left (1 - frac 1 n right )}. \ & = -1. end{align*}$$
This shows that $$limlimits_{n rightarrow infty} P =limlimits_{n rightarrow infty} left (1 - frac 1 n right )^n = frac 1 e.$$
$endgroup$
add a comment |
$begingroup$
Let $P= left (1 - frac 1 n right )^n.$ Then $ln P = frac {ln left (1 - frac 1 n right )} {frac 1 n}. (*)$
Now as $n rightarrow infty$ then $(*)$ is a $frac 0 0$ form. Applying L'Hospital we have $$begin{align*} limlimits_{n rightarrow infty} ln P & = limlimits_{n rightarrow infty} frac {frac {1} {left (1 - frac 1 n right )} cdot frac {1} {n^2}} {-frac {1} {n^2}}. \ & = - limlimits_{n rightarrow infty} frac {1} {left (1 - frac 1 n right )}. \ & = -1. end{align*}$$
This shows that $$limlimits_{n rightarrow infty} P =limlimits_{n rightarrow infty} left (1 - frac 1 n right )^n = frac 1 e.$$
$endgroup$
add a comment |
$begingroup$
Let $P= left (1 - frac 1 n right )^n.$ Then $ln P = frac {ln left (1 - frac 1 n right )} {frac 1 n}. (*)$
Now as $n rightarrow infty$ then $(*)$ is a $frac 0 0$ form. Applying L'Hospital we have $$begin{align*} limlimits_{n rightarrow infty} ln P & = limlimits_{n rightarrow infty} frac {frac {1} {left (1 - frac 1 n right )} cdot frac {1} {n^2}} {-frac {1} {n^2}}. \ & = - limlimits_{n rightarrow infty} frac {1} {left (1 - frac 1 n right )}. \ & = -1. end{align*}$$
This shows that $$limlimits_{n rightarrow infty} P =limlimits_{n rightarrow infty} left (1 - frac 1 n right )^n = frac 1 e.$$
$endgroup$
Let $P= left (1 - frac 1 n right )^n.$ Then $ln P = frac {ln left (1 - frac 1 n right )} {frac 1 n}. (*)$
Now as $n rightarrow infty$ then $(*)$ is a $frac 0 0$ form. Applying L'Hospital we have $$begin{align*} limlimits_{n rightarrow infty} ln P & = limlimits_{n rightarrow infty} frac {frac {1} {left (1 - frac 1 n right )} cdot frac {1} {n^2}} {-frac {1} {n^2}}. \ & = - limlimits_{n rightarrow infty} frac {1} {left (1 - frac 1 n right )}. \ & = -1. end{align*}$$
This shows that $$limlimits_{n rightarrow infty} P =limlimits_{n rightarrow infty} left (1 - frac 1 n right )^n = frac 1 e.$$
edited yesterday
answered yesterday
Dbchatto67Dbchatto67
3,185625
3,185625
add a comment |
add a comment |
$begingroup$
The easiest way, working for all $r in mathbb{R}$, is to write
$$left( 1+ frac{r}{n}right)^n =exp left( n ln left( 1+ frac{r}{n}right)right) = exp left( n left( frac{r}{n} + oleft( frac{1}{n}right) right)right) = exp left( r + oleft( 1right) right)$$
So it converges to $exp(r)$.
$endgroup$
add a comment |
$begingroup$
The easiest way, working for all $r in mathbb{R}$, is to write
$$left( 1+ frac{r}{n}right)^n =exp left( n ln left( 1+ frac{r}{n}right)right) = exp left( n left( frac{r}{n} + oleft( frac{1}{n}right) right)right) = exp left( r + oleft( 1right) right)$$
So it converges to $exp(r)$.
$endgroup$
add a comment |
$begingroup$
The easiest way, working for all $r in mathbb{R}$, is to write
$$left( 1+ frac{r}{n}right)^n =exp left( n ln left( 1+ frac{r}{n}right)right) = exp left( n left( frac{r}{n} + oleft( frac{1}{n}right) right)right) = exp left( r + oleft( 1right) right)$$
So it converges to $exp(r)$.
$endgroup$
The easiest way, working for all $r in mathbb{R}$, is to write
$$left( 1+ frac{r}{n}right)^n =exp left( n ln left( 1+ frac{r}{n}right)right) = exp left( n left( frac{r}{n} + oleft( frac{1}{n}right) right)right) = exp left( r + oleft( 1right) right)$$
So it converges to $exp(r)$.
answered yesterday
TheSilverDoeTheSilverDoe
5,622316
5,622316
add a comment |
add a comment |
$begingroup$
$f(x):=log x;$
$f'(1)= lim_{n rightarrow infty}dfrac{f(1-1/n)-f(1)}{-(1/n)}$;
Hence
$lim_{n rightarrow infty} (nlog(1-1/n)-log 1)=$
$lim_{n rightarrow infty} (-dfrac{log (1-1/n)-log 1}{-(1/n)})=- log '(1)=-1$
Then
$lim_{n rightarrow infty} exp n(log (1-1/n))=$
$exp (lim_{n rightarrow infty} nlog (1-1/n))=$
$exp (-1)$.
Used: Continuity of $exp$.
$endgroup$
add a comment |
$begingroup$
$f(x):=log x;$
$f'(1)= lim_{n rightarrow infty}dfrac{f(1-1/n)-f(1)}{-(1/n)}$;
Hence
$lim_{n rightarrow infty} (nlog(1-1/n)-log 1)=$
$lim_{n rightarrow infty} (-dfrac{log (1-1/n)-log 1}{-(1/n)})=- log '(1)=-1$
Then
$lim_{n rightarrow infty} exp n(log (1-1/n))=$
$exp (lim_{n rightarrow infty} nlog (1-1/n))=$
$exp (-1)$.
Used: Continuity of $exp$.
$endgroup$
add a comment |
$begingroup$
$f(x):=log x;$
$f'(1)= lim_{n rightarrow infty}dfrac{f(1-1/n)-f(1)}{-(1/n)}$;
Hence
$lim_{n rightarrow infty} (nlog(1-1/n)-log 1)=$
$lim_{n rightarrow infty} (-dfrac{log (1-1/n)-log 1}{-(1/n)})=- log '(1)=-1$
Then
$lim_{n rightarrow infty} exp n(log (1-1/n))=$
$exp (lim_{n rightarrow infty} nlog (1-1/n))=$
$exp (-1)$.
Used: Continuity of $exp$.
$endgroup$
$f(x):=log x;$
$f'(1)= lim_{n rightarrow infty}dfrac{f(1-1/n)-f(1)}{-(1/n)}$;
Hence
$lim_{n rightarrow infty} (nlog(1-1/n)-log 1)=$
$lim_{n rightarrow infty} (-dfrac{log (1-1/n)-log 1}{-(1/n)})=- log '(1)=-1$
Then
$lim_{n rightarrow infty} exp n(log (1-1/n))=$
$exp (lim_{n rightarrow infty} nlog (1-1/n))=$
$exp (-1)$.
Used: Continuity of $exp$.
edited yesterday
answered yesterday
Peter SzilasPeter Szilas
12k2822
12k2822
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3187576%2flimit-for-e-and-frac1e%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Isn't the last limit $limlimits_{n rightarrow infty} left (1 - frac 1 n right )^n = frac {1} {e}$?
$endgroup$
– Dbchatto67
yesterday
$begingroup$
The substitution is still valid for $rlt0$ because the bracket contains a number $lt1$.
$endgroup$
– Peter Foreman
yesterday
1
$begingroup$
Side note: no need to be careful for $r=0$. You have $(1+0/n)^n=1$ for all $n$.
$endgroup$
– Dirk
yesterday