Let $f:[0,a]rightarrow[0,infty)$ be a continuous function such that $f(t)leq e^{int_{0}^{t}f(s)ds}-1$ for all...












2












$begingroup$


Let $f:[0,a]rightarrow[0,infty)$ be a continuous function such that $$f(t)leq e^{int_{0}^{t}f(s)ds}-1$$ for all $tin[0,a]$. Prove that $fequiv0$.



I have thought like this: Assume $F(t)=int_{0}^{t}f(s)dsimplies F'(t)=f(t)$ . Then $F'(t)leq e^{F(t)}-1$. Now how can proceed.










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    Let $f:[0,a]rightarrow[0,infty)$ be a continuous function such that $$f(t)leq e^{int_{0}^{t}f(s)ds}-1$$ for all $tin[0,a]$. Prove that $fequiv0$.



    I have thought like this: Assume $F(t)=int_{0}^{t}f(s)dsimplies F'(t)=f(t)$ . Then $F'(t)leq e^{F(t)}-1$. Now how can proceed.










    share|cite|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$


      Let $f:[0,a]rightarrow[0,infty)$ be a continuous function such that $$f(t)leq e^{int_{0}^{t}f(s)ds}-1$$ for all $tin[0,a]$. Prove that $fequiv0$.



      I have thought like this: Assume $F(t)=int_{0}^{t}f(s)dsimplies F'(t)=f(t)$ . Then $F'(t)leq e^{F(t)}-1$. Now how can proceed.










      share|cite|improve this question











      $endgroup$




      Let $f:[0,a]rightarrow[0,infty)$ be a continuous function such that $$f(t)leq e^{int_{0}^{t}f(s)ds}-1$$ for all $tin[0,a]$. Prove that $fequiv0$.



      I have thought like this: Assume $F(t)=int_{0}^{t}f(s)dsimplies F'(t)=f(t)$ . Then $F'(t)leq e^{F(t)}-1$. Now how can proceed.







      real-analysis inequality






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited yesterday









      YuiTo Cheng

      2,43841037




      2,43841037










      asked yesterday









      J.DoeJ.Doe

      1124




      1124






















          1 Answer
          1






          active

          oldest

          votes


















          5












          $begingroup$

          Since $$ F'(t) leq e^{F(t)} -1$$ rearranging and multiplying we get the inequality
          $$e^{-F(t)-t} (F'(t)+1) leq e^{-t}$$
          $$ implies frac {d}{dt} e^{-F(t)-t} geq frac {d}{dt} e^{-t}$$
          $$implies e^{-F(t)-t} geq e^{-t} $$
          $$ implies e^{F(t)} leq 1$$
          $$implies F(t)leq 0$$
          But we know $F$ is non negative and hence $Fequiv 0$
          So $$ fequiv 0$$






          share|cite|improve this answer









          $endgroup$














            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3187426%2flet-f0-a-rightarrow0-infty-be-a-continuous-function-such-that-ft-leq%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            5












            $begingroup$

            Since $$ F'(t) leq e^{F(t)} -1$$ rearranging and multiplying we get the inequality
            $$e^{-F(t)-t} (F'(t)+1) leq e^{-t}$$
            $$ implies frac {d}{dt} e^{-F(t)-t} geq frac {d}{dt} e^{-t}$$
            $$implies e^{-F(t)-t} geq e^{-t} $$
            $$ implies e^{F(t)} leq 1$$
            $$implies F(t)leq 0$$
            But we know $F$ is non negative and hence $Fequiv 0$
            So $$ fequiv 0$$






            share|cite|improve this answer









            $endgroup$


















              5












              $begingroup$

              Since $$ F'(t) leq e^{F(t)} -1$$ rearranging and multiplying we get the inequality
              $$e^{-F(t)-t} (F'(t)+1) leq e^{-t}$$
              $$ implies frac {d}{dt} e^{-F(t)-t} geq frac {d}{dt} e^{-t}$$
              $$implies e^{-F(t)-t} geq e^{-t} $$
              $$ implies e^{F(t)} leq 1$$
              $$implies F(t)leq 0$$
              But we know $F$ is non negative and hence $Fequiv 0$
              So $$ fequiv 0$$






              share|cite|improve this answer









              $endgroup$
















                5












                5








                5





                $begingroup$

                Since $$ F'(t) leq e^{F(t)} -1$$ rearranging and multiplying we get the inequality
                $$e^{-F(t)-t} (F'(t)+1) leq e^{-t}$$
                $$ implies frac {d}{dt} e^{-F(t)-t} geq frac {d}{dt} e^{-t}$$
                $$implies e^{-F(t)-t} geq e^{-t} $$
                $$ implies e^{F(t)} leq 1$$
                $$implies F(t)leq 0$$
                But we know $F$ is non negative and hence $Fequiv 0$
                So $$ fequiv 0$$






                share|cite|improve this answer









                $endgroup$



                Since $$ F'(t) leq e^{F(t)} -1$$ rearranging and multiplying we get the inequality
                $$e^{-F(t)-t} (F'(t)+1) leq e^{-t}$$
                $$ implies frac {d}{dt} e^{-F(t)-t} geq frac {d}{dt} e^{-t}$$
                $$implies e^{-F(t)-t} geq e^{-t} $$
                $$ implies e^{F(t)} leq 1$$
                $$implies F(t)leq 0$$
                But we know $F$ is non negative and hence $Fequiv 0$
                So $$ fequiv 0$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered yesterday









                Ignorant MathematicianIgnorant Mathematician

                1,785114




                1,785114






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3187426%2flet-f0-a-rightarrow0-infty-be-a-continuous-function-such-that-ft-leq%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    數位音樂下載

                    When can things happen in Etherscan, such as the picture below?

                    格利澤436b