Let $f:[0,a]rightarrow[0,infty)$ be a continuous function such that $f(t)leq e^{int_{0}^{t}f(s)ds}-1$ for all...
$begingroup$
Let $f:[0,a]rightarrow[0,infty)$ be a continuous function such that $$f(t)leq e^{int_{0}^{t}f(s)ds}-1$$ for all $tin[0,a]$. Prove that $fequiv0$.
I have thought like this: Assume $F(t)=int_{0}^{t}f(s)dsimplies F'(t)=f(t)$ . Then $F'(t)leq e^{F(t)}-1$. Now how can proceed.
real-analysis inequality
$endgroup$
add a comment |
$begingroup$
Let $f:[0,a]rightarrow[0,infty)$ be a continuous function such that $$f(t)leq e^{int_{0}^{t}f(s)ds}-1$$ for all $tin[0,a]$. Prove that $fequiv0$.
I have thought like this: Assume $F(t)=int_{0}^{t}f(s)dsimplies F'(t)=f(t)$ . Then $F'(t)leq e^{F(t)}-1$. Now how can proceed.
real-analysis inequality
$endgroup$
add a comment |
$begingroup$
Let $f:[0,a]rightarrow[0,infty)$ be a continuous function such that $$f(t)leq e^{int_{0}^{t}f(s)ds}-1$$ for all $tin[0,a]$. Prove that $fequiv0$.
I have thought like this: Assume $F(t)=int_{0}^{t}f(s)dsimplies F'(t)=f(t)$ . Then $F'(t)leq e^{F(t)}-1$. Now how can proceed.
real-analysis inequality
$endgroup$
Let $f:[0,a]rightarrow[0,infty)$ be a continuous function such that $$f(t)leq e^{int_{0}^{t}f(s)ds}-1$$ for all $tin[0,a]$. Prove that $fequiv0$.
I have thought like this: Assume $F(t)=int_{0}^{t}f(s)dsimplies F'(t)=f(t)$ . Then $F'(t)leq e^{F(t)}-1$. Now how can proceed.
real-analysis inequality
real-analysis inequality
edited yesterday
YuiTo Cheng
2,43841037
2,43841037
asked yesterday
J.DoeJ.Doe
1124
1124
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Since $$ F'(t) leq e^{F(t)} -1$$ rearranging and multiplying we get the inequality
$$e^{-F(t)-t} (F'(t)+1) leq e^{-t}$$
$$ implies frac {d}{dt} e^{-F(t)-t} geq frac {d}{dt} e^{-t}$$
$$implies e^{-F(t)-t} geq e^{-t} $$
$$ implies e^{F(t)} leq 1$$
$$implies F(t)leq 0$$
But we know $F$ is non negative and hence $Fequiv 0$
So $$ fequiv 0$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3187426%2flet-f0-a-rightarrow0-infty-be-a-continuous-function-such-that-ft-leq%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since $$ F'(t) leq e^{F(t)} -1$$ rearranging and multiplying we get the inequality
$$e^{-F(t)-t} (F'(t)+1) leq e^{-t}$$
$$ implies frac {d}{dt} e^{-F(t)-t} geq frac {d}{dt} e^{-t}$$
$$implies e^{-F(t)-t} geq e^{-t} $$
$$ implies e^{F(t)} leq 1$$
$$implies F(t)leq 0$$
But we know $F$ is non negative and hence $Fequiv 0$
So $$ fequiv 0$$
$endgroup$
add a comment |
$begingroup$
Since $$ F'(t) leq e^{F(t)} -1$$ rearranging and multiplying we get the inequality
$$e^{-F(t)-t} (F'(t)+1) leq e^{-t}$$
$$ implies frac {d}{dt} e^{-F(t)-t} geq frac {d}{dt} e^{-t}$$
$$implies e^{-F(t)-t} geq e^{-t} $$
$$ implies e^{F(t)} leq 1$$
$$implies F(t)leq 0$$
But we know $F$ is non negative and hence $Fequiv 0$
So $$ fequiv 0$$
$endgroup$
add a comment |
$begingroup$
Since $$ F'(t) leq e^{F(t)} -1$$ rearranging and multiplying we get the inequality
$$e^{-F(t)-t} (F'(t)+1) leq e^{-t}$$
$$ implies frac {d}{dt} e^{-F(t)-t} geq frac {d}{dt} e^{-t}$$
$$implies e^{-F(t)-t} geq e^{-t} $$
$$ implies e^{F(t)} leq 1$$
$$implies F(t)leq 0$$
But we know $F$ is non negative and hence $Fequiv 0$
So $$ fequiv 0$$
$endgroup$
Since $$ F'(t) leq e^{F(t)} -1$$ rearranging and multiplying we get the inequality
$$e^{-F(t)-t} (F'(t)+1) leq e^{-t}$$
$$ implies frac {d}{dt} e^{-F(t)-t} geq frac {d}{dt} e^{-t}$$
$$implies e^{-F(t)-t} geq e^{-t} $$
$$ implies e^{F(t)} leq 1$$
$$implies F(t)leq 0$$
But we know $F$ is non negative and hence $Fequiv 0$
So $$ fequiv 0$$
answered yesterday
Ignorant MathematicianIgnorant Mathematician
1,785114
1,785114
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3187426%2flet-f0-a-rightarrow0-infty-be-a-continuous-function-such-that-ft-leq%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown