Proving the given $mathbb R^3/H$ $cong$ $mathbb R^2$ where $H$ = {$(y,0,0)|y in mathbb R$}
$begingroup$
So I am given a group $mathbb R^3$ and a group $H$ = {$(y,0,0)|y in mathbb R$}. I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused about what is going on. Can anyone provide some help on this?
abstract-algebra group-isomorphism
$endgroup$
add a comment |
$begingroup$
So I am given a group $mathbb R^3$ and a group $H$ = {$(y,0,0)|y in mathbb R$}. I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused about what is going on. Can anyone provide some help on this?
abstract-algebra group-isomorphism
$endgroup$
add a comment |
$begingroup$
So I am given a group $mathbb R^3$ and a group $H$ = {$(y,0,0)|y in mathbb R$}. I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused about what is going on. Can anyone provide some help on this?
abstract-algebra group-isomorphism
$endgroup$
So I am given a group $mathbb R^3$ and a group $H$ = {$(y,0,0)|y in mathbb R$}. I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused about what is going on. Can anyone provide some help on this?
abstract-algebra group-isomorphism
abstract-algebra group-isomorphism
edited yesterday
YuiTo Cheng
2,41341037
2,41341037
asked yesterday
UfomammutUfomammut
393314
393314
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbb{R}^3 longrightarrow mathbb{R}^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = {(y,0,0) | y in mathbb{R} }$ is its kernel.
If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). text{Moreover,} f(0,0,0) = (0,0)$
The kernel of this map is seen to be all $(x,y,z) in mathbb{R}$ such that $y,z$ are $0$ , i.e., $H$.
Hence first isomorphism theorem applies and $ mathbb{R}^3/H equiv mathbb{R}^2.$
$endgroup$
1
$begingroup$
I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
$endgroup$
– Ufomammut
yesterday
$begingroup$
Yes, that will also work.
$endgroup$
– Mayank Mishra
yesterday
add a comment |
$begingroup$
The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185816%2fproving-the-given-mathbb-r3-h-cong-mathbb-r2-where-h-y-0-0y%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbb{R}^3 longrightarrow mathbb{R}^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = {(y,0,0) | y in mathbb{R} }$ is its kernel.
If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). text{Moreover,} f(0,0,0) = (0,0)$
The kernel of this map is seen to be all $(x,y,z) in mathbb{R}$ such that $y,z$ are $0$ , i.e., $H$.
Hence first isomorphism theorem applies and $ mathbb{R}^3/H equiv mathbb{R}^2.$
$endgroup$
1
$begingroup$
I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
$endgroup$
– Ufomammut
yesterday
$begingroup$
Yes, that will also work.
$endgroup$
– Mayank Mishra
yesterday
add a comment |
$begingroup$
We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbb{R}^3 longrightarrow mathbb{R}^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = {(y,0,0) | y in mathbb{R} }$ is its kernel.
If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). text{Moreover,} f(0,0,0) = (0,0)$
The kernel of this map is seen to be all $(x,y,z) in mathbb{R}$ such that $y,z$ are $0$ , i.e., $H$.
Hence first isomorphism theorem applies and $ mathbb{R}^3/H equiv mathbb{R}^2.$
$endgroup$
1
$begingroup$
I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
$endgroup$
– Ufomammut
yesterday
$begingroup$
Yes, that will also work.
$endgroup$
– Mayank Mishra
yesterday
add a comment |
$begingroup$
We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbb{R}^3 longrightarrow mathbb{R}^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = {(y,0,0) | y in mathbb{R} }$ is its kernel.
If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). text{Moreover,} f(0,0,0) = (0,0)$
The kernel of this map is seen to be all $(x,y,z) in mathbb{R}$ such that $y,z$ are $0$ , i.e., $H$.
Hence first isomorphism theorem applies and $ mathbb{R}^3/H equiv mathbb{R}^2.$
$endgroup$
We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbb{R}^3 longrightarrow mathbb{R}^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = {(y,0,0) | y in mathbb{R} }$ is its kernel.
If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). text{Moreover,} f(0,0,0) = (0,0)$
The kernel of this map is seen to be all $(x,y,z) in mathbb{R}$ such that $y,z$ are $0$ , i.e., $H$.
Hence first isomorphism theorem applies and $ mathbb{R}^3/H equiv mathbb{R}^2.$
edited yesterday
answered yesterday
Mayank MishraMayank Mishra
1368
1368
1
$begingroup$
I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
$endgroup$
– Ufomammut
yesterday
$begingroup$
Yes, that will also work.
$endgroup$
– Mayank Mishra
yesterday
add a comment |
1
$begingroup$
I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
$endgroup$
– Ufomammut
yesterday
$begingroup$
Yes, that will also work.
$endgroup$
– Mayank Mishra
yesterday
1
1
$begingroup$
I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
$endgroup$
– Ufomammut
yesterday
$begingroup$
I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
$endgroup$
– Ufomammut
yesterday
$begingroup$
Yes, that will also work.
$endgroup$
– Mayank Mishra
yesterday
$begingroup$
Yes, that will also work.
$endgroup$
– Mayank Mishra
yesterday
add a comment |
$begingroup$
The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.
$endgroup$
add a comment |
$begingroup$
The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.
$endgroup$
add a comment |
$begingroup$
The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.
$endgroup$
The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.
answered yesterday
lEmlEm
3,4971921
3,4971921
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185816%2fproving-the-given-mathbb-r3-h-cong-mathbb-r2-where-h-y-0-0y%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown