Is there a function to partition an integer set?
$begingroup$
First I give an example. For an integer set $(0,1,2,3,4)$, there are eight kinds of subdivision or partition like this
$$(0,4);\~~(0,1)(1,4);~~(0,2)(2,4);~~(0,3)(3,4);\
(0,1)(1,2)(2,4);~~(0,1)(1,3)(3,4);~~(0,2)(2,3)(3,4);~~\(0,1)(1,2)(2,3)(3,4); $$
For a more general set $(0,1,2,...,n)$, there are $2^{n-1}$ kinds of partition.I believe that there must be a special name for this kind of partition mathematically. How can I realize it in MMA?
list-manipulation combinatorics partitions
$endgroup$
add a comment |
$begingroup$
First I give an example. For an integer set $(0,1,2,3,4)$, there are eight kinds of subdivision or partition like this
$$(0,4);\~~(0,1)(1,4);~~(0,2)(2,4);~~(0,3)(3,4);\
(0,1)(1,2)(2,4);~~(0,1)(1,3)(3,4);~~(0,2)(2,3)(3,4);~~\(0,1)(1,2)(2,3)(3,4); $$
For a more general set $(0,1,2,...,n)$, there are $2^{n-1}$ kinds of partition.I believe that there must be a special name for this kind of partition mathematically. How can I realize it in MMA?
list-manipulation combinatorics partitions
$endgroup$
add a comment |
$begingroup$
First I give an example. For an integer set $(0,1,2,3,4)$, there are eight kinds of subdivision or partition like this
$$(0,4);\~~(0,1)(1,4);~~(0,2)(2,4);~~(0,3)(3,4);\
(0,1)(1,2)(2,4);~~(0,1)(1,3)(3,4);~~(0,2)(2,3)(3,4);~~\(0,1)(1,2)(2,3)(3,4); $$
For a more general set $(0,1,2,...,n)$, there are $2^{n-1}$ kinds of partition.I believe that there must be a special name for this kind of partition mathematically. How can I realize it in MMA?
list-manipulation combinatorics partitions
$endgroup$
First I give an example. For an integer set $(0,1,2,3,4)$, there are eight kinds of subdivision or partition like this
$$(0,4);\~~(0,1)(1,4);~~(0,2)(2,4);~~(0,3)(3,4);\
(0,1)(1,2)(2,4);~~(0,1)(1,3)(3,4);~~(0,2)(2,3)(3,4);~~\(0,1)(1,2)(2,3)(3,4); $$
For a more general set $(0,1,2,...,n)$, there are $2^{n-1}$ kinds of partition.I believe that there must be a special name for this kind of partition mathematically. How can I realize it in MMA?
list-manipulation combinatorics partitions
list-manipulation combinatorics partitions
asked 2 days ago
user10709user10709
1186
1186
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
P[n]
will return the set you are asking
P[n_] := Partition[Join[{0}, #, {n}], 2, 1] & /@ Subsets[Range[n - 1]]
P[4]
{{{0, 4}}, {{0, 1}, {1, 4}}, {{0, 2}, {2, 4}}, {{0, 3}, {3, 4}}, {{0,
1}, {1, 2}, {2, 4}}, {{0, 1}, {1, 3}, {3, 4}}, {{0, 2}, {2, 3}, {3,
4}}, {{0, 1}, {1, 2}, {2, 3}, {3, 4}}}
$endgroup$
$begingroup$
Thanks, it works well!!!
$endgroup$
– user10709
2 days ago
$begingroup$
@user10709 I'm glad I helped!
$endgroup$
– J42161217
2 days ago
$begingroup$
Of course, you can combine the functions so that only one application ofMap
is needed:Partition[Join[{0}, #, {n}], 2, 1] & /@ Subsets[Range[n - 1]]
.
$endgroup$
– J. M. is slightly pensive♦
2 days ago
$begingroup$
@J.M.isslightlypensive yes, you are right
$endgroup$
– J42161217
2 days ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194351%2fis-there-a-function-to-partition-an-integer-set%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
P[n]
will return the set you are asking
P[n_] := Partition[Join[{0}, #, {n}], 2, 1] & /@ Subsets[Range[n - 1]]
P[4]
{{{0, 4}}, {{0, 1}, {1, 4}}, {{0, 2}, {2, 4}}, {{0, 3}, {3, 4}}, {{0,
1}, {1, 2}, {2, 4}}, {{0, 1}, {1, 3}, {3, 4}}, {{0, 2}, {2, 3}, {3,
4}}, {{0, 1}, {1, 2}, {2, 3}, {3, 4}}}
$endgroup$
$begingroup$
Thanks, it works well!!!
$endgroup$
– user10709
2 days ago
$begingroup$
@user10709 I'm glad I helped!
$endgroup$
– J42161217
2 days ago
$begingroup$
Of course, you can combine the functions so that only one application ofMap
is needed:Partition[Join[{0}, #, {n}], 2, 1] & /@ Subsets[Range[n - 1]]
.
$endgroup$
– J. M. is slightly pensive♦
2 days ago
$begingroup$
@J.M.isslightlypensive yes, you are right
$endgroup$
– J42161217
2 days ago
add a comment |
$begingroup$
P[n]
will return the set you are asking
P[n_] := Partition[Join[{0}, #, {n}], 2, 1] & /@ Subsets[Range[n - 1]]
P[4]
{{{0, 4}}, {{0, 1}, {1, 4}}, {{0, 2}, {2, 4}}, {{0, 3}, {3, 4}}, {{0,
1}, {1, 2}, {2, 4}}, {{0, 1}, {1, 3}, {3, 4}}, {{0, 2}, {2, 3}, {3,
4}}, {{0, 1}, {1, 2}, {2, 3}, {3, 4}}}
$endgroup$
$begingroup$
Thanks, it works well!!!
$endgroup$
– user10709
2 days ago
$begingroup$
@user10709 I'm glad I helped!
$endgroup$
– J42161217
2 days ago
$begingroup$
Of course, you can combine the functions so that only one application ofMap
is needed:Partition[Join[{0}, #, {n}], 2, 1] & /@ Subsets[Range[n - 1]]
.
$endgroup$
– J. M. is slightly pensive♦
2 days ago
$begingroup$
@J.M.isslightlypensive yes, you are right
$endgroup$
– J42161217
2 days ago
add a comment |
$begingroup$
P[n]
will return the set you are asking
P[n_] := Partition[Join[{0}, #, {n}], 2, 1] & /@ Subsets[Range[n - 1]]
P[4]
{{{0, 4}}, {{0, 1}, {1, 4}}, {{0, 2}, {2, 4}}, {{0, 3}, {3, 4}}, {{0,
1}, {1, 2}, {2, 4}}, {{0, 1}, {1, 3}, {3, 4}}, {{0, 2}, {2, 3}, {3,
4}}, {{0, 1}, {1, 2}, {2, 3}, {3, 4}}}
$endgroup$
P[n]
will return the set you are asking
P[n_] := Partition[Join[{0}, #, {n}], 2, 1] & /@ Subsets[Range[n - 1]]
P[4]
{{{0, 4}}, {{0, 1}, {1, 4}}, {{0, 2}, {2, 4}}, {{0, 3}, {3, 4}}, {{0,
1}, {1, 2}, {2, 4}}, {{0, 1}, {1, 3}, {3, 4}}, {{0, 2}, {2, 3}, {3,
4}}, {{0, 1}, {1, 2}, {2, 3}, {3, 4}}}
edited 2 days ago
answered 2 days ago
J42161217J42161217
4,118324
4,118324
$begingroup$
Thanks, it works well!!!
$endgroup$
– user10709
2 days ago
$begingroup$
@user10709 I'm glad I helped!
$endgroup$
– J42161217
2 days ago
$begingroup$
Of course, you can combine the functions so that only one application ofMap
is needed:Partition[Join[{0}, #, {n}], 2, 1] & /@ Subsets[Range[n - 1]]
.
$endgroup$
– J. M. is slightly pensive♦
2 days ago
$begingroup$
@J.M.isslightlypensive yes, you are right
$endgroup$
– J42161217
2 days ago
add a comment |
$begingroup$
Thanks, it works well!!!
$endgroup$
– user10709
2 days ago
$begingroup$
@user10709 I'm glad I helped!
$endgroup$
– J42161217
2 days ago
$begingroup$
Of course, you can combine the functions so that only one application ofMap
is needed:Partition[Join[{0}, #, {n}], 2, 1] & /@ Subsets[Range[n - 1]]
.
$endgroup$
– J. M. is slightly pensive♦
2 days ago
$begingroup$
@J.M.isslightlypensive yes, you are right
$endgroup$
– J42161217
2 days ago
$begingroup$
Thanks, it works well!!!
$endgroup$
– user10709
2 days ago
$begingroup$
Thanks, it works well!!!
$endgroup$
– user10709
2 days ago
$begingroup$
@user10709 I'm glad I helped!
$endgroup$
– J42161217
2 days ago
$begingroup$
@user10709 I'm glad I helped!
$endgroup$
– J42161217
2 days ago
$begingroup$
Of course, you can combine the functions so that only one application of
Map
is needed: Partition[Join[{0}, #, {n}], 2, 1] & /@ Subsets[Range[n - 1]]
.$endgroup$
– J. M. is slightly pensive♦
2 days ago
$begingroup$
Of course, you can combine the functions so that only one application of
Map
is needed: Partition[Join[{0}, #, {n}], 2, 1] & /@ Subsets[Range[n - 1]]
.$endgroup$
– J. M. is slightly pensive♦
2 days ago
$begingroup$
@J.M.isslightlypensive yes, you are right
$endgroup$
– J42161217
2 days ago
$begingroup$
@J.M.isslightlypensive yes, you are right
$endgroup$
– J42161217
2 days ago
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194351%2fis-there-a-function-to-partition-an-integer-set%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown