Is there a function to partition an integer set?












5












$begingroup$


First I give an example. For an integer set $(0,1,2,3,4)$, there are eight kinds of subdivision or partition like this
$$(0,4);\~~(0,1)(1,4);~~(0,2)(2,4);~~(0,3)(3,4);\
(0,1)(1,2)(2,4);~~(0,1)(1,3)(3,4);~~(0,2)(2,3)(3,4);~~\(0,1)(1,2)(2,3)(3,4); $$



For a more general set $(0,1,2,...,n)$, there are $2^{n-1}$ kinds of partition.I believe that there must be a special name for this kind of partition mathematically. How can I realize it in MMA?










share|improve this question









$endgroup$

















    5












    $begingroup$


    First I give an example. For an integer set $(0,1,2,3,4)$, there are eight kinds of subdivision or partition like this
    $$(0,4);\~~(0,1)(1,4);~~(0,2)(2,4);~~(0,3)(3,4);\
    (0,1)(1,2)(2,4);~~(0,1)(1,3)(3,4);~~(0,2)(2,3)(3,4);~~\(0,1)(1,2)(2,3)(3,4); $$



    For a more general set $(0,1,2,...,n)$, there are $2^{n-1}$ kinds of partition.I believe that there must be a special name for this kind of partition mathematically. How can I realize it in MMA?










    share|improve this question









    $endgroup$















      5












      5








      5





      $begingroup$


      First I give an example. For an integer set $(0,1,2,3,4)$, there are eight kinds of subdivision or partition like this
      $$(0,4);\~~(0,1)(1,4);~~(0,2)(2,4);~~(0,3)(3,4);\
      (0,1)(1,2)(2,4);~~(0,1)(1,3)(3,4);~~(0,2)(2,3)(3,4);~~\(0,1)(1,2)(2,3)(3,4); $$



      For a more general set $(0,1,2,...,n)$, there are $2^{n-1}$ kinds of partition.I believe that there must be a special name for this kind of partition mathematically. How can I realize it in MMA?










      share|improve this question









      $endgroup$




      First I give an example. For an integer set $(0,1,2,3,4)$, there are eight kinds of subdivision or partition like this
      $$(0,4);\~~(0,1)(1,4);~~(0,2)(2,4);~~(0,3)(3,4);\
      (0,1)(1,2)(2,4);~~(0,1)(1,3)(3,4);~~(0,2)(2,3)(3,4);~~\(0,1)(1,2)(2,3)(3,4); $$



      For a more general set $(0,1,2,...,n)$, there are $2^{n-1}$ kinds of partition.I believe that there must be a special name for this kind of partition mathematically. How can I realize it in MMA?







      list-manipulation combinatorics partitions






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 2 days ago









      user10709user10709

      1186




      1186






















          1 Answer
          1






          active

          oldest

          votes


















          8












          $begingroup$

          P[n] will return the set you are asking



          P[n_] := Partition[Join[{0}, #, {n}], 2, 1] & /@ Subsets[Range[n - 1]]

          P[4]



          {{{0, 4}}, {{0, 1}, {1, 4}}, {{0, 2}, {2, 4}}, {{0, 3}, {3, 4}}, {{0,
          1}, {1, 2}, {2, 4}}, {{0, 1}, {1, 3}, {3, 4}}, {{0, 2}, {2, 3}, {3,
          4}}, {{0, 1}, {1, 2}, {2, 3}, {3, 4}}}







          share|improve this answer











          $endgroup$













          • $begingroup$
            Thanks, it works well!!!
            $endgroup$
            – user10709
            2 days ago










          • $begingroup$
            @user10709 I'm glad I helped!
            $endgroup$
            – J42161217
            2 days ago










          • $begingroup$
            Of course, you can combine the functions so that only one application of Map is needed: Partition[Join[{0}, #, {n}], 2, 1] & /@ Subsets[Range[n - 1]].
            $endgroup$
            – J. M. is slightly pensive
            2 days ago










          • $begingroup$
            @J.M.isslightlypensive yes, you are right
            $endgroup$
            – J42161217
            2 days ago












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "387"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194351%2fis-there-a-function-to-partition-an-integer-set%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          8












          $begingroup$

          P[n] will return the set you are asking



          P[n_] := Partition[Join[{0}, #, {n}], 2, 1] & /@ Subsets[Range[n - 1]]

          P[4]



          {{{0, 4}}, {{0, 1}, {1, 4}}, {{0, 2}, {2, 4}}, {{0, 3}, {3, 4}}, {{0,
          1}, {1, 2}, {2, 4}}, {{0, 1}, {1, 3}, {3, 4}}, {{0, 2}, {2, 3}, {3,
          4}}, {{0, 1}, {1, 2}, {2, 3}, {3, 4}}}







          share|improve this answer











          $endgroup$













          • $begingroup$
            Thanks, it works well!!!
            $endgroup$
            – user10709
            2 days ago










          • $begingroup$
            @user10709 I'm glad I helped!
            $endgroup$
            – J42161217
            2 days ago










          • $begingroup$
            Of course, you can combine the functions so that only one application of Map is needed: Partition[Join[{0}, #, {n}], 2, 1] & /@ Subsets[Range[n - 1]].
            $endgroup$
            – J. M. is slightly pensive
            2 days ago










          • $begingroup$
            @J.M.isslightlypensive yes, you are right
            $endgroup$
            – J42161217
            2 days ago
















          8












          $begingroup$

          P[n] will return the set you are asking



          P[n_] := Partition[Join[{0}, #, {n}], 2, 1] & /@ Subsets[Range[n - 1]]

          P[4]



          {{{0, 4}}, {{0, 1}, {1, 4}}, {{0, 2}, {2, 4}}, {{0, 3}, {3, 4}}, {{0,
          1}, {1, 2}, {2, 4}}, {{0, 1}, {1, 3}, {3, 4}}, {{0, 2}, {2, 3}, {3,
          4}}, {{0, 1}, {1, 2}, {2, 3}, {3, 4}}}







          share|improve this answer











          $endgroup$













          • $begingroup$
            Thanks, it works well!!!
            $endgroup$
            – user10709
            2 days ago










          • $begingroup$
            @user10709 I'm glad I helped!
            $endgroup$
            – J42161217
            2 days ago










          • $begingroup$
            Of course, you can combine the functions so that only one application of Map is needed: Partition[Join[{0}, #, {n}], 2, 1] & /@ Subsets[Range[n - 1]].
            $endgroup$
            – J. M. is slightly pensive
            2 days ago










          • $begingroup$
            @J.M.isslightlypensive yes, you are right
            $endgroup$
            – J42161217
            2 days ago














          8












          8








          8





          $begingroup$

          P[n] will return the set you are asking



          P[n_] := Partition[Join[{0}, #, {n}], 2, 1] & /@ Subsets[Range[n - 1]]

          P[4]



          {{{0, 4}}, {{0, 1}, {1, 4}}, {{0, 2}, {2, 4}}, {{0, 3}, {3, 4}}, {{0,
          1}, {1, 2}, {2, 4}}, {{0, 1}, {1, 3}, {3, 4}}, {{0, 2}, {2, 3}, {3,
          4}}, {{0, 1}, {1, 2}, {2, 3}, {3, 4}}}







          share|improve this answer











          $endgroup$



          P[n] will return the set you are asking



          P[n_] := Partition[Join[{0}, #, {n}], 2, 1] & /@ Subsets[Range[n - 1]]

          P[4]



          {{{0, 4}}, {{0, 1}, {1, 4}}, {{0, 2}, {2, 4}}, {{0, 3}, {3, 4}}, {{0,
          1}, {1, 2}, {2, 4}}, {{0, 1}, {1, 3}, {3, 4}}, {{0, 2}, {2, 3}, {3,
          4}}, {{0, 1}, {1, 2}, {2, 3}, {3, 4}}}








          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 2 days ago

























          answered 2 days ago









          J42161217J42161217

          4,118324




          4,118324












          • $begingroup$
            Thanks, it works well!!!
            $endgroup$
            – user10709
            2 days ago










          • $begingroup$
            @user10709 I'm glad I helped!
            $endgroup$
            – J42161217
            2 days ago










          • $begingroup$
            Of course, you can combine the functions so that only one application of Map is needed: Partition[Join[{0}, #, {n}], 2, 1] & /@ Subsets[Range[n - 1]].
            $endgroup$
            – J. M. is slightly pensive
            2 days ago










          • $begingroup$
            @J.M.isslightlypensive yes, you are right
            $endgroup$
            – J42161217
            2 days ago


















          • $begingroup$
            Thanks, it works well!!!
            $endgroup$
            – user10709
            2 days ago










          • $begingroup$
            @user10709 I'm glad I helped!
            $endgroup$
            – J42161217
            2 days ago










          • $begingroup$
            Of course, you can combine the functions so that only one application of Map is needed: Partition[Join[{0}, #, {n}], 2, 1] & /@ Subsets[Range[n - 1]].
            $endgroup$
            – J. M. is slightly pensive
            2 days ago










          • $begingroup$
            @J.M.isslightlypensive yes, you are right
            $endgroup$
            – J42161217
            2 days ago
















          $begingroup$
          Thanks, it works well!!!
          $endgroup$
          – user10709
          2 days ago




          $begingroup$
          Thanks, it works well!!!
          $endgroup$
          – user10709
          2 days ago












          $begingroup$
          @user10709 I'm glad I helped!
          $endgroup$
          – J42161217
          2 days ago




          $begingroup$
          @user10709 I'm glad I helped!
          $endgroup$
          – J42161217
          2 days ago












          $begingroup$
          Of course, you can combine the functions so that only one application of Map is needed: Partition[Join[{0}, #, {n}], 2, 1] & /@ Subsets[Range[n - 1]].
          $endgroup$
          – J. M. is slightly pensive
          2 days ago




          $begingroup$
          Of course, you can combine the functions so that only one application of Map is needed: Partition[Join[{0}, #, {n}], 2, 1] & /@ Subsets[Range[n - 1]].
          $endgroup$
          – J. M. is slightly pensive
          2 days ago












          $begingroup$
          @J.M.isslightlypensive yes, you are right
          $endgroup$
          – J42161217
          2 days ago




          $begingroup$
          @J.M.isslightlypensive yes, you are right
          $endgroup$
          – J42161217
          2 days ago


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematica Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194351%2fis-there-a-function-to-partition-an-integer-set%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          數位音樂下載

          When can things happen in Etherscan, such as the picture below?

          格利澤436b