Project this triangle on surface of a sphere












3















I have the following triangle in TikZ MWE:



documentclass[tikz]{standalone}
usepackage{pgfplots,mathtools}
usetikzlibrary{hapes,decorations.pathreplacing}
usetikzlibrary{patterns}
definecolor{RoyalAzure}{rgb}{0.0, 0.22, 0.66}

begin{document}

begin{tikzpicture}
draw[pattern color=black!50!white,pattern=dots, line width=0.6pt] (0,0) -- (2,3.4641) -- (4,0)--cycle;
end{tikzpicture}

end{document}


that generates:



Triangle



I would like to project this triangle to the surface of a sphere, much like this figure:



Bloch sphere



How can I do this?










share|improve this question























  • Somewhat related: tex.stackexchange.com/questions/408245/…

    – John Kormylo
    yesterday
















3















I have the following triangle in TikZ MWE:



documentclass[tikz]{standalone}
usepackage{pgfplots,mathtools}
usetikzlibrary{hapes,decorations.pathreplacing}
usetikzlibrary{patterns}
definecolor{RoyalAzure}{rgb}{0.0, 0.22, 0.66}

begin{document}

begin{tikzpicture}
draw[pattern color=black!50!white,pattern=dots, line width=0.6pt] (0,0) -- (2,3.4641) -- (4,0)--cycle;
end{tikzpicture}

end{document}


that generates:



Triangle



I would like to project this triangle to the surface of a sphere, much like this figure:



Bloch sphere



How can I do this?










share|improve this question























  • Somewhat related: tex.stackexchange.com/questions/408245/…

    – John Kormylo
    yesterday














3












3








3


1






I have the following triangle in TikZ MWE:



documentclass[tikz]{standalone}
usepackage{pgfplots,mathtools}
usetikzlibrary{hapes,decorations.pathreplacing}
usetikzlibrary{patterns}
definecolor{RoyalAzure}{rgb}{0.0, 0.22, 0.66}

begin{document}

begin{tikzpicture}
draw[pattern color=black!50!white,pattern=dots, line width=0.6pt] (0,0) -- (2,3.4641) -- (4,0)--cycle;
end{tikzpicture}

end{document}


that generates:



Triangle



I would like to project this triangle to the surface of a sphere, much like this figure:



Bloch sphere



How can I do this?










share|improve this question














I have the following triangle in TikZ MWE:



documentclass[tikz]{standalone}
usepackage{pgfplots,mathtools}
usetikzlibrary{hapes,decorations.pathreplacing}
usetikzlibrary{patterns}
definecolor{RoyalAzure}{rgb}{0.0, 0.22, 0.66}

begin{document}

begin{tikzpicture}
draw[pattern color=black!50!white,pattern=dots, line width=0.6pt] (0,0) -- (2,3.4641) -- (4,0)--cycle;
end{tikzpicture}

end{document}


that generates:



Triangle



I would like to project this triangle to the surface of a sphere, much like this figure:



Bloch sphere



How can I do this?







tikz-pgf tikz-styles






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked yesterday









SidSid

711314




711314













  • Somewhat related: tex.stackexchange.com/questions/408245/…

    – John Kormylo
    yesterday



















  • Somewhat related: tex.stackexchange.com/questions/408245/…

    – John Kormylo
    yesterday

















Somewhat related: tex.stackexchange.com/questions/408245/…

– John Kormylo
yesterday





Somewhat related: tex.stackexchange.com/questions/408245/…

– John Kormylo
yesterday










1 Answer
1






active

oldest

votes


















5














The angles of the triangle on the sphere are 3 times 90 degrees whereas the angles of the triangle in the plane are 60 degrees each. Therefore I do not precisely understand what is meant by "project". If it is meant that the triangle on the sphere should also have three equal angles, you could do e.g.



documentclass[tikz,border=3.14mm]{standalone}
usepackage{tikz-3dplot}
usetikzlibrary{patterns,backgrounds}
begin{document}
tdplotsetmaincoords{70}{30}
begin{tikzpicture}[tdplot_main_coords,declare function={R=pi;}]
shade[tdplot_screen_coords,ball color=gray,opacity=0.5] (0,0) coordinate(O)
circle[radius=R];
draw plot[variable=x,domain=tdplotmainphi-180:tdplotmainphi,smooth]
({R*cos(x)},{R*sin(x)},0);
draw[blue,pattern=dots,pattern color=blue]
plot[variable=x,domain=90:00,smooth] (0,{-R*sin(x)},{R*cos(x)})
coordinate (p1)
-- plot[variable=x,domain=0:90,smooth] ({R*sin(x)},0,{R*cos(x)})
coordinate (p2)
-- plot[variable=x,domain=0:90,smooth] ({R*cos(x)},{-R*sin(x)},0)
coordinate (p3);
begin{scope}[on background layer]
foreach X in {1,2,3}
{ draw[dashed] (O) -- (pX); }
end{scope}
end{tikzpicture}
end{document}


enter image description here



An alternative could be to use nonlinear transformations to project anything you want on a sphere. We have used this for the Christmas balls in this video (at a time in which the atmosphere were better...). However, when doing this, we run into the above-mentioned problem that the triangle has different angles on the sphere.



documentclass[tikz,border=3.14mm]{standalone}
usetikzlibrary{patterns}
usepgfmodule{nonlineartransformations}
makeatletter
% from https://tex.stackexchange.com/a/434247/121799
tikzdeclarecoordinatesystem{sphere}{
tikz@scan@one@pointrelax(#1)
spheretransformation
}
%
defspheretransformation{% similar to the pgfmanual section 103.4.2
pgfmathsincos@{pgf@sys@tonumberpgf@x}%
pgfmathsetmacro{relX}{thepgf@x/28.3465}%
pgfmathsetmacro{relY}{thepgf@y/28.3465}%min(max(
pgfmathsetmacro{myx}{28.3465*Radius*cos(min(max((relY/Radius)*(180/pi),-90),90))*sin(min(max((relX/Radius)*cos(min(max((relY/Radius)*(180/pi),-90),90))*(180/pi),-90),90))}
pgfmathsetmacro{myy}{28.3465*Radius*sin(min(max((relY/Radius)*(180/pi),-90),90))}%typeout{(relX,relY)->(myx,myy)}%
pgf@x=myx pt%
pgf@y=myy pt%
}
makeatother
begin{document}
begin{tikzpicture}[pics/trian/.style={code={
draw[pattern color=black!50!white,pattern=dots, line width=0.6pt] (0,0) -- (2,3.4641) -- (4,0)--cycle;}}]
pgfmathsetmacro{Radius}{4}
shade[ball color=red] (0,0) circle[radius=Radius];
begin{scope}[xshift=-10cm]
path (0,0) pic{trian};
end{scope}
begin{scope}[transform shape nonlinear=true]
pgftransformnonlinear{spheretransformation}
pic[local bounding box=box1] at (0,0) {trian};
end{scope}
end{tikzpicture}
end{document}


enter image description here






share|improve this answer





















  • 1





    In this case, I did only want a triangle with the same angles but on the surface of the sphere. I do have other examples where I want to perform a strict projection - but you have very helpfully included an example on how to do that too! Thank you. P.s. a lot of marmots in the video :D

    – Sid
    yesterday











  • For the first method you have, is it possible you could add the axes as in the image in the question?

    – Sid
    yesterday











  • @Sid Done.......

    – marmot
    yesterday












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "85"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f484945%2fproject-this-triangle-on-surface-of-a-sphere%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5














The angles of the triangle on the sphere are 3 times 90 degrees whereas the angles of the triangle in the plane are 60 degrees each. Therefore I do not precisely understand what is meant by "project". If it is meant that the triangle on the sphere should also have three equal angles, you could do e.g.



documentclass[tikz,border=3.14mm]{standalone}
usepackage{tikz-3dplot}
usetikzlibrary{patterns,backgrounds}
begin{document}
tdplotsetmaincoords{70}{30}
begin{tikzpicture}[tdplot_main_coords,declare function={R=pi;}]
shade[tdplot_screen_coords,ball color=gray,opacity=0.5] (0,0) coordinate(O)
circle[radius=R];
draw plot[variable=x,domain=tdplotmainphi-180:tdplotmainphi,smooth]
({R*cos(x)},{R*sin(x)},0);
draw[blue,pattern=dots,pattern color=blue]
plot[variable=x,domain=90:00,smooth] (0,{-R*sin(x)},{R*cos(x)})
coordinate (p1)
-- plot[variable=x,domain=0:90,smooth] ({R*sin(x)},0,{R*cos(x)})
coordinate (p2)
-- plot[variable=x,domain=0:90,smooth] ({R*cos(x)},{-R*sin(x)},0)
coordinate (p3);
begin{scope}[on background layer]
foreach X in {1,2,3}
{ draw[dashed] (O) -- (pX); }
end{scope}
end{tikzpicture}
end{document}


enter image description here



An alternative could be to use nonlinear transformations to project anything you want on a sphere. We have used this for the Christmas balls in this video (at a time in which the atmosphere were better...). However, when doing this, we run into the above-mentioned problem that the triangle has different angles on the sphere.



documentclass[tikz,border=3.14mm]{standalone}
usetikzlibrary{patterns}
usepgfmodule{nonlineartransformations}
makeatletter
% from https://tex.stackexchange.com/a/434247/121799
tikzdeclarecoordinatesystem{sphere}{
tikz@scan@one@pointrelax(#1)
spheretransformation
}
%
defspheretransformation{% similar to the pgfmanual section 103.4.2
pgfmathsincos@{pgf@sys@tonumberpgf@x}%
pgfmathsetmacro{relX}{thepgf@x/28.3465}%
pgfmathsetmacro{relY}{thepgf@y/28.3465}%min(max(
pgfmathsetmacro{myx}{28.3465*Radius*cos(min(max((relY/Radius)*(180/pi),-90),90))*sin(min(max((relX/Radius)*cos(min(max((relY/Radius)*(180/pi),-90),90))*(180/pi),-90),90))}
pgfmathsetmacro{myy}{28.3465*Radius*sin(min(max((relY/Radius)*(180/pi),-90),90))}%typeout{(relX,relY)->(myx,myy)}%
pgf@x=myx pt%
pgf@y=myy pt%
}
makeatother
begin{document}
begin{tikzpicture}[pics/trian/.style={code={
draw[pattern color=black!50!white,pattern=dots, line width=0.6pt] (0,0) -- (2,3.4641) -- (4,0)--cycle;}}]
pgfmathsetmacro{Radius}{4}
shade[ball color=red] (0,0) circle[radius=Radius];
begin{scope}[xshift=-10cm]
path (0,0) pic{trian};
end{scope}
begin{scope}[transform shape nonlinear=true]
pgftransformnonlinear{spheretransformation}
pic[local bounding box=box1] at (0,0) {trian};
end{scope}
end{tikzpicture}
end{document}


enter image description here






share|improve this answer





















  • 1





    In this case, I did only want a triangle with the same angles but on the surface of the sphere. I do have other examples where I want to perform a strict projection - but you have very helpfully included an example on how to do that too! Thank you. P.s. a lot of marmots in the video :D

    – Sid
    yesterday











  • For the first method you have, is it possible you could add the axes as in the image in the question?

    – Sid
    yesterday











  • @Sid Done.......

    – marmot
    yesterday
















5














The angles of the triangle on the sphere are 3 times 90 degrees whereas the angles of the triangle in the plane are 60 degrees each. Therefore I do not precisely understand what is meant by "project". If it is meant that the triangle on the sphere should also have three equal angles, you could do e.g.



documentclass[tikz,border=3.14mm]{standalone}
usepackage{tikz-3dplot}
usetikzlibrary{patterns,backgrounds}
begin{document}
tdplotsetmaincoords{70}{30}
begin{tikzpicture}[tdplot_main_coords,declare function={R=pi;}]
shade[tdplot_screen_coords,ball color=gray,opacity=0.5] (0,0) coordinate(O)
circle[radius=R];
draw plot[variable=x,domain=tdplotmainphi-180:tdplotmainphi,smooth]
({R*cos(x)},{R*sin(x)},0);
draw[blue,pattern=dots,pattern color=blue]
plot[variable=x,domain=90:00,smooth] (0,{-R*sin(x)},{R*cos(x)})
coordinate (p1)
-- plot[variable=x,domain=0:90,smooth] ({R*sin(x)},0,{R*cos(x)})
coordinate (p2)
-- plot[variable=x,domain=0:90,smooth] ({R*cos(x)},{-R*sin(x)},0)
coordinate (p3);
begin{scope}[on background layer]
foreach X in {1,2,3}
{ draw[dashed] (O) -- (pX); }
end{scope}
end{tikzpicture}
end{document}


enter image description here



An alternative could be to use nonlinear transformations to project anything you want on a sphere. We have used this for the Christmas balls in this video (at a time in which the atmosphere were better...). However, when doing this, we run into the above-mentioned problem that the triangle has different angles on the sphere.



documentclass[tikz,border=3.14mm]{standalone}
usetikzlibrary{patterns}
usepgfmodule{nonlineartransformations}
makeatletter
% from https://tex.stackexchange.com/a/434247/121799
tikzdeclarecoordinatesystem{sphere}{
tikz@scan@one@pointrelax(#1)
spheretransformation
}
%
defspheretransformation{% similar to the pgfmanual section 103.4.2
pgfmathsincos@{pgf@sys@tonumberpgf@x}%
pgfmathsetmacro{relX}{thepgf@x/28.3465}%
pgfmathsetmacro{relY}{thepgf@y/28.3465}%min(max(
pgfmathsetmacro{myx}{28.3465*Radius*cos(min(max((relY/Radius)*(180/pi),-90),90))*sin(min(max((relX/Radius)*cos(min(max((relY/Radius)*(180/pi),-90),90))*(180/pi),-90),90))}
pgfmathsetmacro{myy}{28.3465*Radius*sin(min(max((relY/Radius)*(180/pi),-90),90))}%typeout{(relX,relY)->(myx,myy)}%
pgf@x=myx pt%
pgf@y=myy pt%
}
makeatother
begin{document}
begin{tikzpicture}[pics/trian/.style={code={
draw[pattern color=black!50!white,pattern=dots, line width=0.6pt] (0,0) -- (2,3.4641) -- (4,0)--cycle;}}]
pgfmathsetmacro{Radius}{4}
shade[ball color=red] (0,0) circle[radius=Radius];
begin{scope}[xshift=-10cm]
path (0,0) pic{trian};
end{scope}
begin{scope}[transform shape nonlinear=true]
pgftransformnonlinear{spheretransformation}
pic[local bounding box=box1] at (0,0) {trian};
end{scope}
end{tikzpicture}
end{document}


enter image description here






share|improve this answer





















  • 1





    In this case, I did only want a triangle with the same angles but on the surface of the sphere. I do have other examples where I want to perform a strict projection - but you have very helpfully included an example on how to do that too! Thank you. P.s. a lot of marmots in the video :D

    – Sid
    yesterday











  • For the first method you have, is it possible you could add the axes as in the image in the question?

    – Sid
    yesterday











  • @Sid Done.......

    – marmot
    yesterday














5












5








5







The angles of the triangle on the sphere are 3 times 90 degrees whereas the angles of the triangle in the plane are 60 degrees each. Therefore I do not precisely understand what is meant by "project". If it is meant that the triangle on the sphere should also have three equal angles, you could do e.g.



documentclass[tikz,border=3.14mm]{standalone}
usepackage{tikz-3dplot}
usetikzlibrary{patterns,backgrounds}
begin{document}
tdplotsetmaincoords{70}{30}
begin{tikzpicture}[tdplot_main_coords,declare function={R=pi;}]
shade[tdplot_screen_coords,ball color=gray,opacity=0.5] (0,0) coordinate(O)
circle[radius=R];
draw plot[variable=x,domain=tdplotmainphi-180:tdplotmainphi,smooth]
({R*cos(x)},{R*sin(x)},0);
draw[blue,pattern=dots,pattern color=blue]
plot[variable=x,domain=90:00,smooth] (0,{-R*sin(x)},{R*cos(x)})
coordinate (p1)
-- plot[variable=x,domain=0:90,smooth] ({R*sin(x)},0,{R*cos(x)})
coordinate (p2)
-- plot[variable=x,domain=0:90,smooth] ({R*cos(x)},{-R*sin(x)},0)
coordinate (p3);
begin{scope}[on background layer]
foreach X in {1,2,3}
{ draw[dashed] (O) -- (pX); }
end{scope}
end{tikzpicture}
end{document}


enter image description here



An alternative could be to use nonlinear transformations to project anything you want on a sphere. We have used this for the Christmas balls in this video (at a time in which the atmosphere were better...). However, when doing this, we run into the above-mentioned problem that the triangle has different angles on the sphere.



documentclass[tikz,border=3.14mm]{standalone}
usetikzlibrary{patterns}
usepgfmodule{nonlineartransformations}
makeatletter
% from https://tex.stackexchange.com/a/434247/121799
tikzdeclarecoordinatesystem{sphere}{
tikz@scan@one@pointrelax(#1)
spheretransformation
}
%
defspheretransformation{% similar to the pgfmanual section 103.4.2
pgfmathsincos@{pgf@sys@tonumberpgf@x}%
pgfmathsetmacro{relX}{thepgf@x/28.3465}%
pgfmathsetmacro{relY}{thepgf@y/28.3465}%min(max(
pgfmathsetmacro{myx}{28.3465*Radius*cos(min(max((relY/Radius)*(180/pi),-90),90))*sin(min(max((relX/Radius)*cos(min(max((relY/Radius)*(180/pi),-90),90))*(180/pi),-90),90))}
pgfmathsetmacro{myy}{28.3465*Radius*sin(min(max((relY/Radius)*(180/pi),-90),90))}%typeout{(relX,relY)->(myx,myy)}%
pgf@x=myx pt%
pgf@y=myy pt%
}
makeatother
begin{document}
begin{tikzpicture}[pics/trian/.style={code={
draw[pattern color=black!50!white,pattern=dots, line width=0.6pt] (0,0) -- (2,3.4641) -- (4,0)--cycle;}}]
pgfmathsetmacro{Radius}{4}
shade[ball color=red] (0,0) circle[radius=Radius];
begin{scope}[xshift=-10cm]
path (0,0) pic{trian};
end{scope}
begin{scope}[transform shape nonlinear=true]
pgftransformnonlinear{spheretransformation}
pic[local bounding box=box1] at (0,0) {trian};
end{scope}
end{tikzpicture}
end{document}


enter image description here






share|improve this answer















The angles of the triangle on the sphere are 3 times 90 degrees whereas the angles of the triangle in the plane are 60 degrees each. Therefore I do not precisely understand what is meant by "project". If it is meant that the triangle on the sphere should also have three equal angles, you could do e.g.



documentclass[tikz,border=3.14mm]{standalone}
usepackage{tikz-3dplot}
usetikzlibrary{patterns,backgrounds}
begin{document}
tdplotsetmaincoords{70}{30}
begin{tikzpicture}[tdplot_main_coords,declare function={R=pi;}]
shade[tdplot_screen_coords,ball color=gray,opacity=0.5] (0,0) coordinate(O)
circle[radius=R];
draw plot[variable=x,domain=tdplotmainphi-180:tdplotmainphi,smooth]
({R*cos(x)},{R*sin(x)},0);
draw[blue,pattern=dots,pattern color=blue]
plot[variable=x,domain=90:00,smooth] (0,{-R*sin(x)},{R*cos(x)})
coordinate (p1)
-- plot[variable=x,domain=0:90,smooth] ({R*sin(x)},0,{R*cos(x)})
coordinate (p2)
-- plot[variable=x,domain=0:90,smooth] ({R*cos(x)},{-R*sin(x)},0)
coordinate (p3);
begin{scope}[on background layer]
foreach X in {1,2,3}
{ draw[dashed] (O) -- (pX); }
end{scope}
end{tikzpicture}
end{document}


enter image description here



An alternative could be to use nonlinear transformations to project anything you want on a sphere. We have used this for the Christmas balls in this video (at a time in which the atmosphere were better...). However, when doing this, we run into the above-mentioned problem that the triangle has different angles on the sphere.



documentclass[tikz,border=3.14mm]{standalone}
usetikzlibrary{patterns}
usepgfmodule{nonlineartransformations}
makeatletter
% from https://tex.stackexchange.com/a/434247/121799
tikzdeclarecoordinatesystem{sphere}{
tikz@scan@one@pointrelax(#1)
spheretransformation
}
%
defspheretransformation{% similar to the pgfmanual section 103.4.2
pgfmathsincos@{pgf@sys@tonumberpgf@x}%
pgfmathsetmacro{relX}{thepgf@x/28.3465}%
pgfmathsetmacro{relY}{thepgf@y/28.3465}%min(max(
pgfmathsetmacro{myx}{28.3465*Radius*cos(min(max((relY/Radius)*(180/pi),-90),90))*sin(min(max((relX/Radius)*cos(min(max((relY/Radius)*(180/pi),-90),90))*(180/pi),-90),90))}
pgfmathsetmacro{myy}{28.3465*Radius*sin(min(max((relY/Radius)*(180/pi),-90),90))}%typeout{(relX,relY)->(myx,myy)}%
pgf@x=myx pt%
pgf@y=myy pt%
}
makeatother
begin{document}
begin{tikzpicture}[pics/trian/.style={code={
draw[pattern color=black!50!white,pattern=dots, line width=0.6pt] (0,0) -- (2,3.4641) -- (4,0)--cycle;}}]
pgfmathsetmacro{Radius}{4}
shade[ball color=red] (0,0) circle[radius=Radius];
begin{scope}[xshift=-10cm]
path (0,0) pic{trian};
end{scope}
begin{scope}[transform shape nonlinear=true]
pgftransformnonlinear{spheretransformation}
pic[local bounding box=box1] at (0,0) {trian};
end{scope}
end{tikzpicture}
end{document}


enter image description here







share|improve this answer














share|improve this answer



share|improve this answer








edited yesterday

























answered yesterday









marmotmarmot

118k6153288




118k6153288








  • 1





    In this case, I did only want a triangle with the same angles but on the surface of the sphere. I do have other examples where I want to perform a strict projection - but you have very helpfully included an example on how to do that too! Thank you. P.s. a lot of marmots in the video :D

    – Sid
    yesterday











  • For the first method you have, is it possible you could add the axes as in the image in the question?

    – Sid
    yesterday











  • @Sid Done.......

    – marmot
    yesterday














  • 1





    In this case, I did only want a triangle with the same angles but on the surface of the sphere. I do have other examples where I want to perform a strict projection - but you have very helpfully included an example on how to do that too! Thank you. P.s. a lot of marmots in the video :D

    – Sid
    yesterday











  • For the first method you have, is it possible you could add the axes as in the image in the question?

    – Sid
    yesterday











  • @Sid Done.......

    – marmot
    yesterday








1




1





In this case, I did only want a triangle with the same angles but on the surface of the sphere. I do have other examples where I want to perform a strict projection - but you have very helpfully included an example on how to do that too! Thank you. P.s. a lot of marmots in the video :D

– Sid
yesterday





In this case, I did only want a triangle with the same angles but on the surface of the sphere. I do have other examples where I want to perform a strict projection - but you have very helpfully included an example on how to do that too! Thank you. P.s. a lot of marmots in the video :D

– Sid
yesterday













For the first method you have, is it possible you could add the axes as in the image in the question?

– Sid
yesterday





For the first method you have, is it possible you could add the axes as in the image in the question?

– Sid
yesterday













@Sid Done.......

– marmot
yesterday





@Sid Done.......

– marmot
yesterday


















draft saved

draft discarded




















































Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f484945%2fproject-this-triangle-on-surface-of-a-sphere%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

數位音樂下載

格利澤436b

When can things happen in Etherscan, such as the picture below?