Project this triangle on surface of a sphere
I have the following triangle in TikZ MWE:
documentclass[tikz]{standalone}
usepackage{pgfplots,mathtools}
usetikzlibrary{hapes,decorations.pathreplacing}
usetikzlibrary{patterns}
definecolor{RoyalAzure}{rgb}{0.0, 0.22, 0.66}
begin{document}
begin{tikzpicture}
draw[pattern color=black!50!white,pattern=dots, line width=0.6pt] (0,0) -- (2,3.4641) -- (4,0)--cycle;
end{tikzpicture}
end{document}
that generates:
I would like to project this triangle to the surface of a sphere, much like this figure:
How can I do this?
tikz-pgf tikz-styles
add a comment |
I have the following triangle in TikZ MWE:
documentclass[tikz]{standalone}
usepackage{pgfplots,mathtools}
usetikzlibrary{hapes,decorations.pathreplacing}
usetikzlibrary{patterns}
definecolor{RoyalAzure}{rgb}{0.0, 0.22, 0.66}
begin{document}
begin{tikzpicture}
draw[pattern color=black!50!white,pattern=dots, line width=0.6pt] (0,0) -- (2,3.4641) -- (4,0)--cycle;
end{tikzpicture}
end{document}
that generates:
I would like to project this triangle to the surface of a sphere, much like this figure:
How can I do this?
tikz-pgf tikz-styles
Somewhat related: tex.stackexchange.com/questions/408245/…
– John Kormylo
yesterday
add a comment |
I have the following triangle in TikZ MWE:
documentclass[tikz]{standalone}
usepackage{pgfplots,mathtools}
usetikzlibrary{hapes,decorations.pathreplacing}
usetikzlibrary{patterns}
definecolor{RoyalAzure}{rgb}{0.0, 0.22, 0.66}
begin{document}
begin{tikzpicture}
draw[pattern color=black!50!white,pattern=dots, line width=0.6pt] (0,0) -- (2,3.4641) -- (4,0)--cycle;
end{tikzpicture}
end{document}
that generates:
I would like to project this triangle to the surface of a sphere, much like this figure:
How can I do this?
tikz-pgf tikz-styles
I have the following triangle in TikZ MWE:
documentclass[tikz]{standalone}
usepackage{pgfplots,mathtools}
usetikzlibrary{hapes,decorations.pathreplacing}
usetikzlibrary{patterns}
definecolor{RoyalAzure}{rgb}{0.0, 0.22, 0.66}
begin{document}
begin{tikzpicture}
draw[pattern color=black!50!white,pattern=dots, line width=0.6pt] (0,0) -- (2,3.4641) -- (4,0)--cycle;
end{tikzpicture}
end{document}
that generates:
I would like to project this triangle to the surface of a sphere, much like this figure:
How can I do this?
tikz-pgf tikz-styles
tikz-pgf tikz-styles
asked yesterday
SidSid
711314
711314
Somewhat related: tex.stackexchange.com/questions/408245/…
– John Kormylo
yesterday
add a comment |
Somewhat related: tex.stackexchange.com/questions/408245/…
– John Kormylo
yesterday
Somewhat related: tex.stackexchange.com/questions/408245/…
– John Kormylo
yesterday
Somewhat related: tex.stackexchange.com/questions/408245/…
– John Kormylo
yesterday
add a comment |
1 Answer
1
active
oldest
votes
The angles of the triangle on the sphere are 3 times 90 degrees whereas the angles of the triangle in the plane are 60 degrees each. Therefore I do not precisely understand what is meant by "project". If it is meant that the triangle on the sphere should also have three equal angles, you could do e.g.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{tikz-3dplot}
usetikzlibrary{patterns,backgrounds}
begin{document}
tdplotsetmaincoords{70}{30}
begin{tikzpicture}[tdplot_main_coords,declare function={R=pi;}]
shade[tdplot_screen_coords,ball color=gray,opacity=0.5] (0,0) coordinate(O)
circle[radius=R];
draw plot[variable=x,domain=tdplotmainphi-180:tdplotmainphi,smooth]
({R*cos(x)},{R*sin(x)},0);
draw[blue,pattern=dots,pattern color=blue]
plot[variable=x,domain=90:00,smooth] (0,{-R*sin(x)},{R*cos(x)})
coordinate (p1)
-- plot[variable=x,domain=0:90,smooth] ({R*sin(x)},0,{R*cos(x)})
coordinate (p2)
-- plot[variable=x,domain=0:90,smooth] ({R*cos(x)},{-R*sin(x)},0)
coordinate (p3);
begin{scope}[on background layer]
foreach X in {1,2,3}
{ draw[dashed] (O) -- (pX); }
end{scope}
end{tikzpicture}
end{document}
An alternative could be to use nonlinear transformations to project anything you want on a sphere. We have used this for the Christmas balls in this video (at a time in which the atmosphere were better...). However, when doing this, we run into the above-mentioned problem that the triangle has different angles on the sphere.
documentclass[tikz,border=3.14mm]{standalone}
usetikzlibrary{patterns}
usepgfmodule{nonlineartransformations}
makeatletter
% from https://tex.stackexchange.com/a/434247/121799
tikzdeclarecoordinatesystem{sphere}{
tikz@scan@one@pointrelax(#1)
spheretransformation
}
%
defspheretransformation{% similar to the pgfmanual section 103.4.2
pgfmathsincos@{pgf@sys@tonumberpgf@x}%
pgfmathsetmacro{relX}{thepgf@x/28.3465}%
pgfmathsetmacro{relY}{thepgf@y/28.3465}%min(max(
pgfmathsetmacro{myx}{28.3465*Radius*cos(min(max((relY/Radius)*(180/pi),-90),90))*sin(min(max((relX/Radius)*cos(min(max((relY/Radius)*(180/pi),-90),90))*(180/pi),-90),90))}
pgfmathsetmacro{myy}{28.3465*Radius*sin(min(max((relY/Radius)*(180/pi),-90),90))}%typeout{(relX,relY)->(myx,myy)}%
pgf@x=myx pt%
pgf@y=myy pt%
}
makeatother
begin{document}
begin{tikzpicture}[pics/trian/.style={code={
draw[pattern color=black!50!white,pattern=dots, line width=0.6pt] (0,0) -- (2,3.4641) -- (4,0)--cycle;}}]
pgfmathsetmacro{Radius}{4}
shade[ball color=red] (0,0) circle[radius=Radius];
begin{scope}[xshift=-10cm]
path (0,0) pic{trian};
end{scope}
begin{scope}[transform shape nonlinear=true]
pgftransformnonlinear{spheretransformation}
pic[local bounding box=box1] at (0,0) {trian};
end{scope}
end{tikzpicture}
end{document}
1
In this case, I did only want a triangle with the same angles but on the surface of the sphere. I do have other examples where I want to perform a strict projection - but you have very helpfully included an example on how to do that too! Thank you. P.s. a lot of marmots in the video :D
– Sid
yesterday
For the first method you have, is it possible you could add the axes as in the image in the question?
– Sid
yesterday
@Sid Done.......
– marmot
yesterday
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "85"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f484945%2fproject-this-triangle-on-surface-of-a-sphere%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
The angles of the triangle on the sphere are 3 times 90 degrees whereas the angles of the triangle in the plane are 60 degrees each. Therefore I do not precisely understand what is meant by "project". If it is meant that the triangle on the sphere should also have three equal angles, you could do e.g.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{tikz-3dplot}
usetikzlibrary{patterns,backgrounds}
begin{document}
tdplotsetmaincoords{70}{30}
begin{tikzpicture}[tdplot_main_coords,declare function={R=pi;}]
shade[tdplot_screen_coords,ball color=gray,opacity=0.5] (0,0) coordinate(O)
circle[radius=R];
draw plot[variable=x,domain=tdplotmainphi-180:tdplotmainphi,smooth]
({R*cos(x)},{R*sin(x)},0);
draw[blue,pattern=dots,pattern color=blue]
plot[variable=x,domain=90:00,smooth] (0,{-R*sin(x)},{R*cos(x)})
coordinate (p1)
-- plot[variable=x,domain=0:90,smooth] ({R*sin(x)},0,{R*cos(x)})
coordinate (p2)
-- plot[variable=x,domain=0:90,smooth] ({R*cos(x)},{-R*sin(x)},0)
coordinate (p3);
begin{scope}[on background layer]
foreach X in {1,2,3}
{ draw[dashed] (O) -- (pX); }
end{scope}
end{tikzpicture}
end{document}
An alternative could be to use nonlinear transformations to project anything you want on a sphere. We have used this for the Christmas balls in this video (at a time in which the atmosphere were better...). However, when doing this, we run into the above-mentioned problem that the triangle has different angles on the sphere.
documentclass[tikz,border=3.14mm]{standalone}
usetikzlibrary{patterns}
usepgfmodule{nonlineartransformations}
makeatletter
% from https://tex.stackexchange.com/a/434247/121799
tikzdeclarecoordinatesystem{sphere}{
tikz@scan@one@pointrelax(#1)
spheretransformation
}
%
defspheretransformation{% similar to the pgfmanual section 103.4.2
pgfmathsincos@{pgf@sys@tonumberpgf@x}%
pgfmathsetmacro{relX}{thepgf@x/28.3465}%
pgfmathsetmacro{relY}{thepgf@y/28.3465}%min(max(
pgfmathsetmacro{myx}{28.3465*Radius*cos(min(max((relY/Radius)*(180/pi),-90),90))*sin(min(max((relX/Radius)*cos(min(max((relY/Radius)*(180/pi),-90),90))*(180/pi),-90),90))}
pgfmathsetmacro{myy}{28.3465*Radius*sin(min(max((relY/Radius)*(180/pi),-90),90))}%typeout{(relX,relY)->(myx,myy)}%
pgf@x=myx pt%
pgf@y=myy pt%
}
makeatother
begin{document}
begin{tikzpicture}[pics/trian/.style={code={
draw[pattern color=black!50!white,pattern=dots, line width=0.6pt] (0,0) -- (2,3.4641) -- (4,0)--cycle;}}]
pgfmathsetmacro{Radius}{4}
shade[ball color=red] (0,0) circle[radius=Radius];
begin{scope}[xshift=-10cm]
path (0,0) pic{trian};
end{scope}
begin{scope}[transform shape nonlinear=true]
pgftransformnonlinear{spheretransformation}
pic[local bounding box=box1] at (0,0) {trian};
end{scope}
end{tikzpicture}
end{document}
1
In this case, I did only want a triangle with the same angles but on the surface of the sphere. I do have other examples where I want to perform a strict projection - but you have very helpfully included an example on how to do that too! Thank you. P.s. a lot of marmots in the video :D
– Sid
yesterday
For the first method you have, is it possible you could add the axes as in the image in the question?
– Sid
yesterday
@Sid Done.......
– marmot
yesterday
add a comment |
The angles of the triangle on the sphere are 3 times 90 degrees whereas the angles of the triangle in the plane are 60 degrees each. Therefore I do not precisely understand what is meant by "project". If it is meant that the triangle on the sphere should also have three equal angles, you could do e.g.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{tikz-3dplot}
usetikzlibrary{patterns,backgrounds}
begin{document}
tdplotsetmaincoords{70}{30}
begin{tikzpicture}[tdplot_main_coords,declare function={R=pi;}]
shade[tdplot_screen_coords,ball color=gray,opacity=0.5] (0,0) coordinate(O)
circle[radius=R];
draw plot[variable=x,domain=tdplotmainphi-180:tdplotmainphi,smooth]
({R*cos(x)},{R*sin(x)},0);
draw[blue,pattern=dots,pattern color=blue]
plot[variable=x,domain=90:00,smooth] (0,{-R*sin(x)},{R*cos(x)})
coordinate (p1)
-- plot[variable=x,domain=0:90,smooth] ({R*sin(x)},0,{R*cos(x)})
coordinate (p2)
-- plot[variable=x,domain=0:90,smooth] ({R*cos(x)},{-R*sin(x)},0)
coordinate (p3);
begin{scope}[on background layer]
foreach X in {1,2,3}
{ draw[dashed] (O) -- (pX); }
end{scope}
end{tikzpicture}
end{document}
An alternative could be to use nonlinear transformations to project anything you want on a sphere. We have used this for the Christmas balls in this video (at a time in which the atmosphere were better...). However, when doing this, we run into the above-mentioned problem that the triangle has different angles on the sphere.
documentclass[tikz,border=3.14mm]{standalone}
usetikzlibrary{patterns}
usepgfmodule{nonlineartransformations}
makeatletter
% from https://tex.stackexchange.com/a/434247/121799
tikzdeclarecoordinatesystem{sphere}{
tikz@scan@one@pointrelax(#1)
spheretransformation
}
%
defspheretransformation{% similar to the pgfmanual section 103.4.2
pgfmathsincos@{pgf@sys@tonumberpgf@x}%
pgfmathsetmacro{relX}{thepgf@x/28.3465}%
pgfmathsetmacro{relY}{thepgf@y/28.3465}%min(max(
pgfmathsetmacro{myx}{28.3465*Radius*cos(min(max((relY/Radius)*(180/pi),-90),90))*sin(min(max((relX/Radius)*cos(min(max((relY/Radius)*(180/pi),-90),90))*(180/pi),-90),90))}
pgfmathsetmacro{myy}{28.3465*Radius*sin(min(max((relY/Radius)*(180/pi),-90),90))}%typeout{(relX,relY)->(myx,myy)}%
pgf@x=myx pt%
pgf@y=myy pt%
}
makeatother
begin{document}
begin{tikzpicture}[pics/trian/.style={code={
draw[pattern color=black!50!white,pattern=dots, line width=0.6pt] (0,0) -- (2,3.4641) -- (4,0)--cycle;}}]
pgfmathsetmacro{Radius}{4}
shade[ball color=red] (0,0) circle[radius=Radius];
begin{scope}[xshift=-10cm]
path (0,0) pic{trian};
end{scope}
begin{scope}[transform shape nonlinear=true]
pgftransformnonlinear{spheretransformation}
pic[local bounding box=box1] at (0,0) {trian};
end{scope}
end{tikzpicture}
end{document}
1
In this case, I did only want a triangle with the same angles but on the surface of the sphere. I do have other examples where I want to perform a strict projection - but you have very helpfully included an example on how to do that too! Thank you. P.s. a lot of marmots in the video :D
– Sid
yesterday
For the first method you have, is it possible you could add the axes as in the image in the question?
– Sid
yesterday
@Sid Done.......
– marmot
yesterday
add a comment |
The angles of the triangle on the sphere are 3 times 90 degrees whereas the angles of the triangle in the plane are 60 degrees each. Therefore I do not precisely understand what is meant by "project". If it is meant that the triangle on the sphere should also have three equal angles, you could do e.g.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{tikz-3dplot}
usetikzlibrary{patterns,backgrounds}
begin{document}
tdplotsetmaincoords{70}{30}
begin{tikzpicture}[tdplot_main_coords,declare function={R=pi;}]
shade[tdplot_screen_coords,ball color=gray,opacity=0.5] (0,0) coordinate(O)
circle[radius=R];
draw plot[variable=x,domain=tdplotmainphi-180:tdplotmainphi,smooth]
({R*cos(x)},{R*sin(x)},0);
draw[blue,pattern=dots,pattern color=blue]
plot[variable=x,domain=90:00,smooth] (0,{-R*sin(x)},{R*cos(x)})
coordinate (p1)
-- plot[variable=x,domain=0:90,smooth] ({R*sin(x)},0,{R*cos(x)})
coordinate (p2)
-- plot[variable=x,domain=0:90,smooth] ({R*cos(x)},{-R*sin(x)},0)
coordinate (p3);
begin{scope}[on background layer]
foreach X in {1,2,3}
{ draw[dashed] (O) -- (pX); }
end{scope}
end{tikzpicture}
end{document}
An alternative could be to use nonlinear transformations to project anything you want on a sphere. We have used this for the Christmas balls in this video (at a time in which the atmosphere were better...). However, when doing this, we run into the above-mentioned problem that the triangle has different angles on the sphere.
documentclass[tikz,border=3.14mm]{standalone}
usetikzlibrary{patterns}
usepgfmodule{nonlineartransformations}
makeatletter
% from https://tex.stackexchange.com/a/434247/121799
tikzdeclarecoordinatesystem{sphere}{
tikz@scan@one@pointrelax(#1)
spheretransformation
}
%
defspheretransformation{% similar to the pgfmanual section 103.4.2
pgfmathsincos@{pgf@sys@tonumberpgf@x}%
pgfmathsetmacro{relX}{thepgf@x/28.3465}%
pgfmathsetmacro{relY}{thepgf@y/28.3465}%min(max(
pgfmathsetmacro{myx}{28.3465*Radius*cos(min(max((relY/Radius)*(180/pi),-90),90))*sin(min(max((relX/Radius)*cos(min(max((relY/Radius)*(180/pi),-90),90))*(180/pi),-90),90))}
pgfmathsetmacro{myy}{28.3465*Radius*sin(min(max((relY/Radius)*(180/pi),-90),90))}%typeout{(relX,relY)->(myx,myy)}%
pgf@x=myx pt%
pgf@y=myy pt%
}
makeatother
begin{document}
begin{tikzpicture}[pics/trian/.style={code={
draw[pattern color=black!50!white,pattern=dots, line width=0.6pt] (0,0) -- (2,3.4641) -- (4,0)--cycle;}}]
pgfmathsetmacro{Radius}{4}
shade[ball color=red] (0,0) circle[radius=Radius];
begin{scope}[xshift=-10cm]
path (0,0) pic{trian};
end{scope}
begin{scope}[transform shape nonlinear=true]
pgftransformnonlinear{spheretransformation}
pic[local bounding box=box1] at (0,0) {trian};
end{scope}
end{tikzpicture}
end{document}
The angles of the triangle on the sphere are 3 times 90 degrees whereas the angles of the triangle in the plane are 60 degrees each. Therefore I do not precisely understand what is meant by "project". If it is meant that the triangle on the sphere should also have three equal angles, you could do e.g.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{tikz-3dplot}
usetikzlibrary{patterns,backgrounds}
begin{document}
tdplotsetmaincoords{70}{30}
begin{tikzpicture}[tdplot_main_coords,declare function={R=pi;}]
shade[tdplot_screen_coords,ball color=gray,opacity=0.5] (0,0) coordinate(O)
circle[radius=R];
draw plot[variable=x,domain=tdplotmainphi-180:tdplotmainphi,smooth]
({R*cos(x)},{R*sin(x)},0);
draw[blue,pattern=dots,pattern color=blue]
plot[variable=x,domain=90:00,smooth] (0,{-R*sin(x)},{R*cos(x)})
coordinate (p1)
-- plot[variable=x,domain=0:90,smooth] ({R*sin(x)},0,{R*cos(x)})
coordinate (p2)
-- plot[variable=x,domain=0:90,smooth] ({R*cos(x)},{-R*sin(x)},0)
coordinate (p3);
begin{scope}[on background layer]
foreach X in {1,2,3}
{ draw[dashed] (O) -- (pX); }
end{scope}
end{tikzpicture}
end{document}
An alternative could be to use nonlinear transformations to project anything you want on a sphere. We have used this for the Christmas balls in this video (at a time in which the atmosphere were better...). However, when doing this, we run into the above-mentioned problem that the triangle has different angles on the sphere.
documentclass[tikz,border=3.14mm]{standalone}
usetikzlibrary{patterns}
usepgfmodule{nonlineartransformations}
makeatletter
% from https://tex.stackexchange.com/a/434247/121799
tikzdeclarecoordinatesystem{sphere}{
tikz@scan@one@pointrelax(#1)
spheretransformation
}
%
defspheretransformation{% similar to the pgfmanual section 103.4.2
pgfmathsincos@{pgf@sys@tonumberpgf@x}%
pgfmathsetmacro{relX}{thepgf@x/28.3465}%
pgfmathsetmacro{relY}{thepgf@y/28.3465}%min(max(
pgfmathsetmacro{myx}{28.3465*Radius*cos(min(max((relY/Radius)*(180/pi),-90),90))*sin(min(max((relX/Radius)*cos(min(max((relY/Radius)*(180/pi),-90),90))*(180/pi),-90),90))}
pgfmathsetmacro{myy}{28.3465*Radius*sin(min(max((relY/Radius)*(180/pi),-90),90))}%typeout{(relX,relY)->(myx,myy)}%
pgf@x=myx pt%
pgf@y=myy pt%
}
makeatother
begin{document}
begin{tikzpicture}[pics/trian/.style={code={
draw[pattern color=black!50!white,pattern=dots, line width=0.6pt] (0,0) -- (2,3.4641) -- (4,0)--cycle;}}]
pgfmathsetmacro{Radius}{4}
shade[ball color=red] (0,0) circle[radius=Radius];
begin{scope}[xshift=-10cm]
path (0,0) pic{trian};
end{scope}
begin{scope}[transform shape nonlinear=true]
pgftransformnonlinear{spheretransformation}
pic[local bounding box=box1] at (0,0) {trian};
end{scope}
end{tikzpicture}
end{document}
edited yesterday
answered yesterday
marmotmarmot
118k6153288
118k6153288
1
In this case, I did only want a triangle with the same angles but on the surface of the sphere. I do have other examples where I want to perform a strict projection - but you have very helpfully included an example on how to do that too! Thank you. P.s. a lot of marmots in the video :D
– Sid
yesterday
For the first method you have, is it possible you could add the axes as in the image in the question?
– Sid
yesterday
@Sid Done.......
– marmot
yesterday
add a comment |
1
In this case, I did only want a triangle with the same angles but on the surface of the sphere. I do have other examples where I want to perform a strict projection - but you have very helpfully included an example on how to do that too! Thank you. P.s. a lot of marmots in the video :D
– Sid
yesterday
For the first method you have, is it possible you could add the axes as in the image in the question?
– Sid
yesterday
@Sid Done.......
– marmot
yesterday
1
1
In this case, I did only want a triangle with the same angles but on the surface of the sphere. I do have other examples where I want to perform a strict projection - but you have very helpfully included an example on how to do that too! Thank you. P.s. a lot of marmots in the video :D
– Sid
yesterday
In this case, I did only want a triangle with the same angles but on the surface of the sphere. I do have other examples where I want to perform a strict projection - but you have very helpfully included an example on how to do that too! Thank you. P.s. a lot of marmots in the video :D
– Sid
yesterday
For the first method you have, is it possible you could add the axes as in the image in the question?
– Sid
yesterday
For the first method you have, is it possible you could add the axes as in the image in the question?
– Sid
yesterday
@Sid Done.......
– marmot
yesterday
@Sid Done.......
– marmot
yesterday
add a comment |
Thanks for contributing an answer to TeX - LaTeX Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f484945%2fproject-this-triangle-on-surface-of-a-sphere%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Somewhat related: tex.stackexchange.com/questions/408245/…
– John Kormylo
yesterday