Left action of a group on permutation representation
$begingroup$
I am studying my course on permutation representation, and I am stuck at understanding the left action of a finite group on the permutation representation $F(X,Bbb C)$. In my course it is given for $(g,phi)in Gtimes F(X,Bbb C) $ by:
$g*phi(xin X)to phi(g^{-1}x)$.
Is this a left group action?
I have: $h*(g*phi(x))= h*phi(g^{-1}x)= phi(h^{-1}g^{-1}x) = phi((gh)^{-1}x)= (gh)*phi(x) neq (hg)*phi(x)$.
I must be missing something.
abstract-algebra group-theory representation-theory group-actions
$endgroup$
add a comment |
$begingroup$
I am studying my course on permutation representation, and I am stuck at understanding the left action of a finite group on the permutation representation $F(X,Bbb C)$. In my course it is given for $(g,phi)in Gtimes F(X,Bbb C) $ by:
$g*phi(xin X)to phi(g^{-1}x)$.
Is this a left group action?
I have: $h*(g*phi(x))= h*phi(g^{-1}x)= phi(h^{-1}g^{-1}x) = phi((gh)^{-1}x)= (gh)*phi(x) neq (hg)*phi(x)$.
I must be missing something.
abstract-algebra group-theory representation-theory group-actions
$endgroup$
add a comment |
$begingroup$
I am studying my course on permutation representation, and I am stuck at understanding the left action of a finite group on the permutation representation $F(X,Bbb C)$. In my course it is given for $(g,phi)in Gtimes F(X,Bbb C) $ by:
$g*phi(xin X)to phi(g^{-1}x)$.
Is this a left group action?
I have: $h*(g*phi(x))= h*phi(g^{-1}x)= phi(h^{-1}g^{-1}x) = phi((gh)^{-1}x)= (gh)*phi(x) neq (hg)*phi(x)$.
I must be missing something.
abstract-algebra group-theory representation-theory group-actions
$endgroup$
I am studying my course on permutation representation, and I am stuck at understanding the left action of a finite group on the permutation representation $F(X,Bbb C)$. In my course it is given for $(g,phi)in Gtimes F(X,Bbb C) $ by:
$g*phi(xin X)to phi(g^{-1}x)$.
Is this a left group action?
I have: $h*(g*phi(x))= h*phi(g^{-1}x)= phi(h^{-1}g^{-1}x) = phi((gh)^{-1}x)= (gh)*phi(x) neq (hg)*phi(x)$.
I must be missing something.
abstract-algebra group-theory representation-theory group-actions
abstract-algebra group-theory representation-theory group-actions
edited yesterday
Peter Mortensen
563310
563310
asked yesterday
PerelManPerelMan
803414
803414
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Note that by the definition $g*phi$ is in $F(X,mathbb C)$ defined by $(g*phi)(x):= phi(g^{-1}x)$, so the calculation is the following:
$$begin{align}
(h*(g*phi))(x)&= (g*phi)(h^{-1}x)\
&= phi(g^{-1}h^{-1}x)\
&= phi((hg)^{-1}x)\
&= (hg*phi)(x).
end{align}$$
Thus $h*(g*phi)= hg*phi$.
$endgroup$
add a comment |
$begingroup$
In addition to the accepted answer I want to point out that one can also start by substituting the inner expression. Since $(g*phi)(x) := phi(g^{-1}x)$, we have $g*phi = x to phi(g^{-1}x)$, therefore
$$begin{align}
(h*(g*phi))(x)
&= (h*(ttophi(g^{-1}t)))(x)\
&= (ttophi(g^{-1}t))(h^{-1}x)\
&= phi(g^{-1}(h^{-1}x))\
&= (hg*phi)(x).
end{align}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188566%2fleft-action-of-a-group-on-permutation-representation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that by the definition $g*phi$ is in $F(X,mathbb C)$ defined by $(g*phi)(x):= phi(g^{-1}x)$, so the calculation is the following:
$$begin{align}
(h*(g*phi))(x)&= (g*phi)(h^{-1}x)\
&= phi(g^{-1}h^{-1}x)\
&= phi((hg)^{-1}x)\
&= (hg*phi)(x).
end{align}$$
Thus $h*(g*phi)= hg*phi$.
$endgroup$
add a comment |
$begingroup$
Note that by the definition $g*phi$ is in $F(X,mathbb C)$ defined by $(g*phi)(x):= phi(g^{-1}x)$, so the calculation is the following:
$$begin{align}
(h*(g*phi))(x)&= (g*phi)(h^{-1}x)\
&= phi(g^{-1}h^{-1}x)\
&= phi((hg)^{-1}x)\
&= (hg*phi)(x).
end{align}$$
Thus $h*(g*phi)= hg*phi$.
$endgroup$
add a comment |
$begingroup$
Note that by the definition $g*phi$ is in $F(X,mathbb C)$ defined by $(g*phi)(x):= phi(g^{-1}x)$, so the calculation is the following:
$$begin{align}
(h*(g*phi))(x)&= (g*phi)(h^{-1}x)\
&= phi(g^{-1}h^{-1}x)\
&= phi((hg)^{-1}x)\
&= (hg*phi)(x).
end{align}$$
Thus $h*(g*phi)= hg*phi$.
$endgroup$
Note that by the definition $g*phi$ is in $F(X,mathbb C)$ defined by $(g*phi)(x):= phi(g^{-1}x)$, so the calculation is the following:
$$begin{align}
(h*(g*phi))(x)&= (g*phi)(h^{-1}x)\
&= phi(g^{-1}h^{-1}x)\
&= phi((hg)^{-1}x)\
&= (hg*phi)(x).
end{align}$$
Thus $h*(g*phi)= hg*phi$.
edited yesterday
Shaun
10.6k113687
10.6k113687
answered yesterday
SMMSMM
3,268512
3,268512
add a comment |
add a comment |
$begingroup$
In addition to the accepted answer I want to point out that one can also start by substituting the inner expression. Since $(g*phi)(x) := phi(g^{-1}x)$, we have $g*phi = x to phi(g^{-1}x)$, therefore
$$begin{align}
(h*(g*phi))(x)
&= (h*(ttophi(g^{-1}t)))(x)\
&= (ttophi(g^{-1}t))(h^{-1}x)\
&= phi(g^{-1}(h^{-1}x))\
&= (hg*phi)(x).
end{align}$$
$endgroup$
add a comment |
$begingroup$
In addition to the accepted answer I want to point out that one can also start by substituting the inner expression. Since $(g*phi)(x) := phi(g^{-1}x)$, we have $g*phi = x to phi(g^{-1}x)$, therefore
$$begin{align}
(h*(g*phi))(x)
&= (h*(ttophi(g^{-1}t)))(x)\
&= (ttophi(g^{-1}t))(h^{-1}x)\
&= phi(g^{-1}(h^{-1}x))\
&= (hg*phi)(x).
end{align}$$
$endgroup$
add a comment |
$begingroup$
In addition to the accepted answer I want to point out that one can also start by substituting the inner expression. Since $(g*phi)(x) := phi(g^{-1}x)$, we have $g*phi = x to phi(g^{-1}x)$, therefore
$$begin{align}
(h*(g*phi))(x)
&= (h*(ttophi(g^{-1}t)))(x)\
&= (ttophi(g^{-1}t))(h^{-1}x)\
&= phi(g^{-1}(h^{-1}x))\
&= (hg*phi)(x).
end{align}$$
$endgroup$
In addition to the accepted answer I want to point out that one can also start by substituting the inner expression. Since $(g*phi)(x) := phi(g^{-1}x)$, we have $g*phi = x to phi(g^{-1}x)$, therefore
$$begin{align}
(h*(g*phi))(x)
&= (h*(ttophi(g^{-1}t)))(x)\
&= (ttophi(g^{-1}t))(h^{-1}x)\
&= phi(g^{-1}(h^{-1}x))\
&= (hg*phi)(x).
end{align}$$
answered yesterday
Micha WiedenmannMicha Wiedenmann
1396
1396
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188566%2fleft-action-of-a-group-on-permutation-representation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown