Showing $sum_{k=0}^{n} {n choose k}frac{{(-1)}^k}{n+k+1}$ is positive
$begingroup$
Show that the sum$$sum_{k=0}^{n} {n choose k}frac{{(-1)}^k}{n+k+1}$$ is a positive rational number.
It is easy to show that it is a rational number. But I am having trouble showing that this expression is positive. It might be some binomial expansion that I could not get.
combinatorics summation binomial-coefficients binomial-ideals
$endgroup$
add a comment |
$begingroup$
Show that the sum$$sum_{k=0}^{n} {n choose k}frac{{(-1)}^k}{n+k+1}$$ is a positive rational number.
It is easy to show that it is a rational number. But I am having trouble showing that this expression is positive. It might be some binomial expansion that I could not get.
combinatorics summation binomial-coefficients binomial-ideals
$endgroup$
1
$begingroup$
Have you tried using induction on $n$ for example?
$endgroup$
– Minus One-Twelfth
yesterday
add a comment |
$begingroup$
Show that the sum$$sum_{k=0}^{n} {n choose k}frac{{(-1)}^k}{n+k+1}$$ is a positive rational number.
It is easy to show that it is a rational number. But I am having trouble showing that this expression is positive. It might be some binomial expansion that I could not get.
combinatorics summation binomial-coefficients binomial-ideals
$endgroup$
Show that the sum$$sum_{k=0}^{n} {n choose k}frac{{(-1)}^k}{n+k+1}$$ is a positive rational number.
It is easy to show that it is a rational number. But I am having trouble showing that this expression is positive. It might be some binomial expansion that I could not get.
combinatorics summation binomial-coefficients binomial-ideals
combinatorics summation binomial-coefficients binomial-ideals
edited yesterday
YuiTo Cheng
2,1192837
2,1192837
asked yesterday
Hitendra KumarHitendra Kumar
706
706
1
$begingroup$
Have you tried using induction on $n$ for example?
$endgroup$
– Minus One-Twelfth
yesterday
add a comment |
1
$begingroup$
Have you tried using induction on $n$ for example?
$endgroup$
– Minus One-Twelfth
yesterday
1
1
$begingroup$
Have you tried using induction on $n$ for example?
$endgroup$
– Minus One-Twelfth
yesterday
$begingroup$
Have you tried using induction on $n$ for example?
$endgroup$
– Minus One-Twelfth
yesterday
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Direct proof:
$$begin{split}
sum_{k=0}^{n} {nchoose k}frac{{(-1)}^k}{n+k+1} &=sum_{k=0}^{n} {nchoose k}(-1)^kint_0^1 x^{n+k}dx\
&=int_0^1x^nsum_{k=0}^{n} {nchoose k}(-x)^kdx\
&=int_0^1x^n(1-x)^ndx
end{split}$$
The latter is clearly a positive number.
$endgroup$
$begingroup$
How did you conclude that the sum is a limited integral? Do you know where can I find more on this on-line? Thanks.
$endgroup$
– NoChance
yesterday
4
$begingroup$
It's a "known trick" that $frac 1 {p+1} = int_0^1x^pdx$. Then I noticed that the sum looked almost like that of the binomial theorem.
$endgroup$
– Stefan Lafon
yesterday
add a comment |
$begingroup$
When $k=0$ the term is positive. When $k=1$ the term is negative BUT SMALLER (in absolute value) THAN THE $k=0$ TERM.
When $k=2$ the term is positive. When $k=3$ the term is negative BUT SMALLER (in absolute value) THAN THE $k=2$ TERM.
.....
Get it?
$endgroup$
$begingroup$
sorry, I did not write question correctly. Now, I have corrected that. By looking at your answer I realized my mistake. Thanks
$endgroup$
– Hitendra Kumar
yesterday
add a comment |
$begingroup$
We can specifically prove that
$$
boxed{sum_{k=0}^{n} {n choose k}frac{{(-1)}^k}{n+k+1}=left((2n+1)binom{2n}nright)^{-1}}
$$
To see this, shuffle a deck of $2n+1$ cards numbered $1$ to $2n+1$. Consider this:
What is the probability that card number $n+1$ is in the middle of the deck, and cards numbered $1$ to $n$ are below it?
The easy answer is the fraction on the RHS. The LHS can be interpreted as an application of the principle of inclusion exclusion. Namely, we first take the probability that card number of $n+1$ is the lowest of the cards numbered $n+1,n+2,dots,2n+1$. This is the $k=0$ term. From this, for each $i=1,dots,n$, we subtract the probability that $n+1$ is the lowest of the list $i,n+1,n+2,dots,2n+1$. This is a bad event, because we want $n+1$ to be above $i$. Doing this for each $i$, we subtract $binom{n}1frac{1}{n+2}$. We then must add back in the doubly subtracted events, subtract the triple intersections, and so on, eventually ending with the alternating sum on the left.
$endgroup$
add a comment |
protected by Community♦ yesterday
Thank you for your interest in this question.
Because it has attracted low-quality or spam answers that had to be removed, posting an answer now requires 10 reputation on this site (the association bonus does not count).
Would you like to answer one of these unanswered questions instead?
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Direct proof:
$$begin{split}
sum_{k=0}^{n} {nchoose k}frac{{(-1)}^k}{n+k+1} &=sum_{k=0}^{n} {nchoose k}(-1)^kint_0^1 x^{n+k}dx\
&=int_0^1x^nsum_{k=0}^{n} {nchoose k}(-x)^kdx\
&=int_0^1x^n(1-x)^ndx
end{split}$$
The latter is clearly a positive number.
$endgroup$
$begingroup$
How did you conclude that the sum is a limited integral? Do you know where can I find more on this on-line? Thanks.
$endgroup$
– NoChance
yesterday
4
$begingroup$
It's a "known trick" that $frac 1 {p+1} = int_0^1x^pdx$. Then I noticed that the sum looked almost like that of the binomial theorem.
$endgroup$
– Stefan Lafon
yesterday
add a comment |
$begingroup$
Direct proof:
$$begin{split}
sum_{k=0}^{n} {nchoose k}frac{{(-1)}^k}{n+k+1} &=sum_{k=0}^{n} {nchoose k}(-1)^kint_0^1 x^{n+k}dx\
&=int_0^1x^nsum_{k=0}^{n} {nchoose k}(-x)^kdx\
&=int_0^1x^n(1-x)^ndx
end{split}$$
The latter is clearly a positive number.
$endgroup$
$begingroup$
How did you conclude that the sum is a limited integral? Do you know where can I find more on this on-line? Thanks.
$endgroup$
– NoChance
yesterday
4
$begingroup$
It's a "known trick" that $frac 1 {p+1} = int_0^1x^pdx$. Then I noticed that the sum looked almost like that of the binomial theorem.
$endgroup$
– Stefan Lafon
yesterday
add a comment |
$begingroup$
Direct proof:
$$begin{split}
sum_{k=0}^{n} {nchoose k}frac{{(-1)}^k}{n+k+1} &=sum_{k=0}^{n} {nchoose k}(-1)^kint_0^1 x^{n+k}dx\
&=int_0^1x^nsum_{k=0}^{n} {nchoose k}(-x)^kdx\
&=int_0^1x^n(1-x)^ndx
end{split}$$
The latter is clearly a positive number.
$endgroup$
Direct proof:
$$begin{split}
sum_{k=0}^{n} {nchoose k}frac{{(-1)}^k}{n+k+1} &=sum_{k=0}^{n} {nchoose k}(-1)^kint_0^1 x^{n+k}dx\
&=int_0^1x^nsum_{k=0}^{n} {nchoose k}(-x)^kdx\
&=int_0^1x^n(1-x)^ndx
end{split}$$
The latter is clearly a positive number.
answered yesterday
Stefan LafonStefan Lafon
3,005212
3,005212
$begingroup$
How did you conclude that the sum is a limited integral? Do you know where can I find more on this on-line? Thanks.
$endgroup$
– NoChance
yesterday
4
$begingroup$
It's a "known trick" that $frac 1 {p+1} = int_0^1x^pdx$. Then I noticed that the sum looked almost like that of the binomial theorem.
$endgroup$
– Stefan Lafon
yesterday
add a comment |
$begingroup$
How did you conclude that the sum is a limited integral? Do you know where can I find more on this on-line? Thanks.
$endgroup$
– NoChance
yesterday
4
$begingroup$
It's a "known trick" that $frac 1 {p+1} = int_0^1x^pdx$. Then I noticed that the sum looked almost like that of the binomial theorem.
$endgroup$
– Stefan Lafon
yesterday
$begingroup$
How did you conclude that the sum is a limited integral? Do you know where can I find more on this on-line? Thanks.
$endgroup$
– NoChance
yesterday
$begingroup$
How did you conclude that the sum is a limited integral? Do you know where can I find more on this on-line? Thanks.
$endgroup$
– NoChance
yesterday
4
4
$begingroup$
It's a "known trick" that $frac 1 {p+1} = int_0^1x^pdx$. Then I noticed that the sum looked almost like that of the binomial theorem.
$endgroup$
– Stefan Lafon
yesterday
$begingroup$
It's a "known trick" that $frac 1 {p+1} = int_0^1x^pdx$. Then I noticed that the sum looked almost like that of the binomial theorem.
$endgroup$
– Stefan Lafon
yesterday
add a comment |
$begingroup$
When $k=0$ the term is positive. When $k=1$ the term is negative BUT SMALLER (in absolute value) THAN THE $k=0$ TERM.
When $k=2$ the term is positive. When $k=3$ the term is negative BUT SMALLER (in absolute value) THAN THE $k=2$ TERM.
.....
Get it?
$endgroup$
$begingroup$
sorry, I did not write question correctly. Now, I have corrected that. By looking at your answer I realized my mistake. Thanks
$endgroup$
– Hitendra Kumar
yesterday
add a comment |
$begingroup$
When $k=0$ the term is positive. When $k=1$ the term is negative BUT SMALLER (in absolute value) THAN THE $k=0$ TERM.
When $k=2$ the term is positive. When $k=3$ the term is negative BUT SMALLER (in absolute value) THAN THE $k=2$ TERM.
.....
Get it?
$endgroup$
$begingroup$
sorry, I did not write question correctly. Now, I have corrected that. By looking at your answer I realized my mistake. Thanks
$endgroup$
– Hitendra Kumar
yesterday
add a comment |
$begingroup$
When $k=0$ the term is positive. When $k=1$ the term is negative BUT SMALLER (in absolute value) THAN THE $k=0$ TERM.
When $k=2$ the term is positive. When $k=3$ the term is negative BUT SMALLER (in absolute value) THAN THE $k=2$ TERM.
.....
Get it?
$endgroup$
When $k=0$ the term is positive. When $k=1$ the term is negative BUT SMALLER (in absolute value) THAN THE $k=0$ TERM.
When $k=2$ the term is positive. When $k=3$ the term is negative BUT SMALLER (in absolute value) THAN THE $k=2$ TERM.
.....
Get it?
answered yesterday
David G. StorkDavid G. Stork
11.2k41432
11.2k41432
$begingroup$
sorry, I did not write question correctly. Now, I have corrected that. By looking at your answer I realized my mistake. Thanks
$endgroup$
– Hitendra Kumar
yesterday
add a comment |
$begingroup$
sorry, I did not write question correctly. Now, I have corrected that. By looking at your answer I realized my mistake. Thanks
$endgroup$
– Hitendra Kumar
yesterday
$begingroup$
sorry, I did not write question correctly. Now, I have corrected that. By looking at your answer I realized my mistake. Thanks
$endgroup$
– Hitendra Kumar
yesterday
$begingroup$
sorry, I did not write question correctly. Now, I have corrected that. By looking at your answer I realized my mistake. Thanks
$endgroup$
– Hitendra Kumar
yesterday
add a comment |
$begingroup$
We can specifically prove that
$$
boxed{sum_{k=0}^{n} {n choose k}frac{{(-1)}^k}{n+k+1}=left((2n+1)binom{2n}nright)^{-1}}
$$
To see this, shuffle a deck of $2n+1$ cards numbered $1$ to $2n+1$. Consider this:
What is the probability that card number $n+1$ is in the middle of the deck, and cards numbered $1$ to $n$ are below it?
The easy answer is the fraction on the RHS. The LHS can be interpreted as an application of the principle of inclusion exclusion. Namely, we first take the probability that card number of $n+1$ is the lowest of the cards numbered $n+1,n+2,dots,2n+1$. This is the $k=0$ term. From this, for each $i=1,dots,n$, we subtract the probability that $n+1$ is the lowest of the list $i,n+1,n+2,dots,2n+1$. This is a bad event, because we want $n+1$ to be above $i$. Doing this for each $i$, we subtract $binom{n}1frac{1}{n+2}$. We then must add back in the doubly subtracted events, subtract the triple intersections, and so on, eventually ending with the alternating sum on the left.
$endgroup$
add a comment |
$begingroup$
We can specifically prove that
$$
boxed{sum_{k=0}^{n} {n choose k}frac{{(-1)}^k}{n+k+1}=left((2n+1)binom{2n}nright)^{-1}}
$$
To see this, shuffle a deck of $2n+1$ cards numbered $1$ to $2n+1$. Consider this:
What is the probability that card number $n+1$ is in the middle of the deck, and cards numbered $1$ to $n$ are below it?
The easy answer is the fraction on the RHS. The LHS can be interpreted as an application of the principle of inclusion exclusion. Namely, we first take the probability that card number of $n+1$ is the lowest of the cards numbered $n+1,n+2,dots,2n+1$. This is the $k=0$ term. From this, for each $i=1,dots,n$, we subtract the probability that $n+1$ is the lowest of the list $i,n+1,n+2,dots,2n+1$. This is a bad event, because we want $n+1$ to be above $i$. Doing this for each $i$, we subtract $binom{n}1frac{1}{n+2}$. We then must add back in the doubly subtracted events, subtract the triple intersections, and so on, eventually ending with the alternating sum on the left.
$endgroup$
add a comment |
$begingroup$
We can specifically prove that
$$
boxed{sum_{k=0}^{n} {n choose k}frac{{(-1)}^k}{n+k+1}=left((2n+1)binom{2n}nright)^{-1}}
$$
To see this, shuffle a deck of $2n+1$ cards numbered $1$ to $2n+1$. Consider this:
What is the probability that card number $n+1$ is in the middle of the deck, and cards numbered $1$ to $n$ are below it?
The easy answer is the fraction on the RHS. The LHS can be interpreted as an application of the principle of inclusion exclusion. Namely, we first take the probability that card number of $n+1$ is the lowest of the cards numbered $n+1,n+2,dots,2n+1$. This is the $k=0$ term. From this, for each $i=1,dots,n$, we subtract the probability that $n+1$ is the lowest of the list $i,n+1,n+2,dots,2n+1$. This is a bad event, because we want $n+1$ to be above $i$. Doing this for each $i$, we subtract $binom{n}1frac{1}{n+2}$. We then must add back in the doubly subtracted events, subtract the triple intersections, and so on, eventually ending with the alternating sum on the left.
$endgroup$
We can specifically prove that
$$
boxed{sum_{k=0}^{n} {n choose k}frac{{(-1)}^k}{n+k+1}=left((2n+1)binom{2n}nright)^{-1}}
$$
To see this, shuffle a deck of $2n+1$ cards numbered $1$ to $2n+1$. Consider this:
What is the probability that card number $n+1$ is in the middle of the deck, and cards numbered $1$ to $n$ are below it?
The easy answer is the fraction on the RHS. The LHS can be interpreted as an application of the principle of inclusion exclusion. Namely, we first take the probability that card number of $n+1$ is the lowest of the cards numbered $n+1,n+2,dots,2n+1$. This is the $k=0$ term. From this, for each $i=1,dots,n$, we subtract the probability that $n+1$ is the lowest of the list $i,n+1,n+2,dots,2n+1$. This is a bad event, because we want $n+1$ to be above $i$. Doing this for each $i$, we subtract $binom{n}1frac{1}{n+2}$. We then must add back in the doubly subtracted events, subtract the triple intersections, and so on, eventually ending with the alternating sum on the left.
edited yesterday
answered yesterday
Mike EarnestMike Earnest
25.6k22151
25.6k22151
add a comment |
add a comment |
protected by Community♦ yesterday
Thank you for your interest in this question.
Because it has attracted low-quality or spam answers that had to be removed, posting an answer now requires 10 reputation on this site (the association bonus does not count).
Would you like to answer one of these unanswered questions instead?
1
$begingroup$
Have you tried using induction on $n$ for example?
$endgroup$
– Minus One-Twelfth
yesterday