Hash table solution to twoSum












8












$begingroup$


I try the most to solve a twoSum problem in leetcode




Given an array of integers, return indices of the two numbers such that they add up to a specific target.



You may assume that each input would have exactly one solution, and you may not use the same element twice.



Example:



Given nums = [2, 7, 11, 15], target = 9,



Because nums[0] + nums[1] = 2 + 7 = 9,
return [0, 1].




The plan:




  1. brute force to iterate len(nums) O(n)

  2. search for target - num[i] with a hash table O(1)


Implement



class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
nums_d = {}
for i in range(len(nums)):
nums_d.setdefault(nums[i], ).append(i)

for i in range(len(nums)):
sub_target = target - nums[i]
nums_d[nums[i]].pop(0) #remove the fixer
result = nums_d.get(sub_target)#hash table to search

if result:
return [i, result[0]]
return


I strives hours for this solution but found that answer accepted but not passed Score 60.




Runtime: 60 ms, faster than 46.66% of Python3 online submissions for Two Sum.
Memory Usage: 16.1 MB, less than 5.08% of Python3 online submissions for Two Sum.




I want to refactor the codes so that to achieve at least faster than 60%.



Could you please provide hints?










share|improve this question









New contributor




Alice is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 1




    $begingroup$
    Take care not to misuse the term refactoring when you just mean rewriting.
    $endgroup$
    – 200_success
    yesterday
















8












$begingroup$


I try the most to solve a twoSum problem in leetcode




Given an array of integers, return indices of the two numbers such that they add up to a specific target.



You may assume that each input would have exactly one solution, and you may not use the same element twice.



Example:



Given nums = [2, 7, 11, 15], target = 9,



Because nums[0] + nums[1] = 2 + 7 = 9,
return [0, 1].




The plan:




  1. brute force to iterate len(nums) O(n)

  2. search for target - num[i] with a hash table O(1)


Implement



class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
nums_d = {}
for i in range(len(nums)):
nums_d.setdefault(nums[i], ).append(i)

for i in range(len(nums)):
sub_target = target - nums[i]
nums_d[nums[i]].pop(0) #remove the fixer
result = nums_d.get(sub_target)#hash table to search

if result:
return [i, result[0]]
return


I strives hours for this solution but found that answer accepted but not passed Score 60.




Runtime: 60 ms, faster than 46.66% of Python3 online submissions for Two Sum.
Memory Usage: 16.1 MB, less than 5.08% of Python3 online submissions for Two Sum.




I want to refactor the codes so that to achieve at least faster than 60%.



Could you please provide hints?










share|improve this question









New contributor




Alice is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 1




    $begingroup$
    Take care not to misuse the term refactoring when you just mean rewriting.
    $endgroup$
    – 200_success
    yesterday














8












8








8





$begingroup$


I try the most to solve a twoSum problem in leetcode




Given an array of integers, return indices of the two numbers such that they add up to a specific target.



You may assume that each input would have exactly one solution, and you may not use the same element twice.



Example:



Given nums = [2, 7, 11, 15], target = 9,



Because nums[0] + nums[1] = 2 + 7 = 9,
return [0, 1].




The plan:




  1. brute force to iterate len(nums) O(n)

  2. search for target - num[i] with a hash table O(1)


Implement



class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
nums_d = {}
for i in range(len(nums)):
nums_d.setdefault(nums[i], ).append(i)

for i in range(len(nums)):
sub_target = target - nums[i]
nums_d[nums[i]].pop(0) #remove the fixer
result = nums_d.get(sub_target)#hash table to search

if result:
return [i, result[0]]
return


I strives hours for this solution but found that answer accepted but not passed Score 60.




Runtime: 60 ms, faster than 46.66% of Python3 online submissions for Two Sum.
Memory Usage: 16.1 MB, less than 5.08% of Python3 online submissions for Two Sum.




I want to refactor the codes so that to achieve at least faster than 60%.



Could you please provide hints?










share|improve this question









New contributor




Alice is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I try the most to solve a twoSum problem in leetcode




Given an array of integers, return indices of the two numbers such that they add up to a specific target.



You may assume that each input would have exactly one solution, and you may not use the same element twice.



Example:



Given nums = [2, 7, 11, 15], target = 9,



Because nums[0] + nums[1] = 2 + 7 = 9,
return [0, 1].




The plan:




  1. brute force to iterate len(nums) O(n)

  2. search for target - num[i] with a hash table O(1)


Implement



class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
nums_d = {}
for i in range(len(nums)):
nums_d.setdefault(nums[i], ).append(i)

for i in range(len(nums)):
sub_target = target - nums[i]
nums_d[nums[i]].pop(0) #remove the fixer
result = nums_d.get(sub_target)#hash table to search

if result:
return [i, result[0]]
return


I strives hours for this solution but found that answer accepted but not passed Score 60.




Runtime: 60 ms, faster than 46.66% of Python3 online submissions for Two Sum.
Memory Usage: 16.1 MB, less than 5.08% of Python3 online submissions for Two Sum.




I want to refactor the codes so that to achieve at least faster than 60%.



Could you please provide hints?







python performance algorithm python-3.x k-sum






share|improve this question









New contributor




Alice is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




Alice is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited yesterday









200_success

130k17155419




130k17155419






New contributor




Alice is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked yesterday









AliceAlice

1774




1774




New contributor




Alice is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Alice is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Alice is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 1




    $begingroup$
    Take care not to misuse the term refactoring when you just mean rewriting.
    $endgroup$
    – 200_success
    yesterday














  • 1




    $begingroup$
    Take care not to misuse the term refactoring when you just mean rewriting.
    $endgroup$
    – 200_success
    yesterday








1




1




$begingroup$
Take care not to misuse the term refactoring when you just mean rewriting.
$endgroup$
– 200_success
yesterday




$begingroup$
Take care not to misuse the term refactoring when you just mean rewriting.
$endgroup$
– 200_success
yesterday










2 Answers
2






active

oldest

votes


















7












$begingroup$

First some stylistic points





  • nums_d.setdefault(nums[i], ).append(i)



    The setdefault is unnecessary here, you can assign a list normally



    nums_d[nums[i]] = [i]



  • When you need both the index and the element use enumerate see PEP279




    nums_d = {}
    for i in range(len(nums)):
    nums_d.setdefault(nums[i], ).append(i)



    nums_d = {}
    for i, e in enumerate(nums):
    nums_d[e] = [i]



  • Use comprehension when possible (They use the C style looping and is considered to be faster)



    nums_d = { e: [i] for i, e  in enumerate(nums) }



Hint



You loop over nums twice, but this can be done in one loop! To make it O(n)



Whenever you visit a new element in nums ->



Check if it's sum complement is in nums_d, else add the target - element to the dictionary with the index as value t - e : i





nums_d = {}
for i, e in enumerate(nums):
if e in nums_d:
return [nums_d[e], i]
nums_d[target - e] = i






share|improve this answer











$endgroup$













  • $begingroup$
    Your first bullet point is only true if each number in the array is unique. Otherwise you override instead of append.
    $endgroup$
    – Graipher
    17 hours ago






  • 1




    $begingroup$
    @Graipher True, a defaultdict might be more appropriate there.
    $endgroup$
    – Ludisposed
    12 hours ago



















0












$begingroup$


You may assume that each input would have exactly one solution.




So there's no need to iterate over num twice. In fact, you won't even iterate over it for the full range, because you can return when you found the solution.



With the input given, I'd try this:



nums = [2, 7, 11, 15]
target = 9

def twoSum(nums, target):
for i in nums:
for m in nums[nums.index(i)+1:]:
if i + m == target:
return [nums.index(i), nums.index(m)]

print(twoSum(nums, target))


Say i + m is your target twoSum, you iterate over nums for each i and then look in the rest of num if there's any m for which i + m = target, and return when found.



Edit: This fails if you have duplicate integers in nums that add up to target, and it'll be slower if the solution is two elements near the end of nums.



Also: thank you for mentioning Leetcode, it's new to me. Nice!






share|improve this answer











$endgroup$









  • 1




    $begingroup$
    Hey, long time no see! Unfortunately the code you've supplied is worse than the one in the question, as it takes $O(n^2)$ time and either $O(n)$ or $O(n^2)$ memory, depending on the GC. Where in the question it runs in $O(n)$ time and space. Yours is however easier to understand.
    $endgroup$
    – Peilonrayz
    yesterday












  • $begingroup$
    Hi, yes, I know, Ludisposed pointed that out as well, hence the edit. I came across the question in Triage, and thought I might as well try an answer. Hadn't thought beyond nums given, with which it yields the answer in 1+3+1=5 iterations. I'm not familiar with O(n^2), but I guess that'd be 16 here?
    $endgroup$
    – RolfBly
    10 hours ago










  • $begingroup$
    Ah, he must have deleted his comments. :( Yes it goes by the worst case, so if 11 and 15 were the targets. It's different from mathematics however, as your function runs in IIRC worst case $frac{n^2}{2}$ iterations. And so it's mostly just a vague guess at performance.
    $endgroup$
    – Peilonrayz
    6 hours ago











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
});
});
}, "mathjax-editing");

StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "196"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});






Alice is a new contributor. Be nice, and check out our Code of Conduct.










draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f215975%2fhash-table-solution-to-twosum%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









7












$begingroup$

First some stylistic points





  • nums_d.setdefault(nums[i], ).append(i)



    The setdefault is unnecessary here, you can assign a list normally



    nums_d[nums[i]] = [i]



  • When you need both the index and the element use enumerate see PEP279




    nums_d = {}
    for i in range(len(nums)):
    nums_d.setdefault(nums[i], ).append(i)



    nums_d = {}
    for i, e in enumerate(nums):
    nums_d[e] = [i]



  • Use comprehension when possible (They use the C style looping and is considered to be faster)



    nums_d = { e: [i] for i, e  in enumerate(nums) }



Hint



You loop over nums twice, but this can be done in one loop! To make it O(n)



Whenever you visit a new element in nums ->



Check if it's sum complement is in nums_d, else add the target - element to the dictionary with the index as value t - e : i





nums_d = {}
for i, e in enumerate(nums):
if e in nums_d:
return [nums_d[e], i]
nums_d[target - e] = i






share|improve this answer











$endgroup$













  • $begingroup$
    Your first bullet point is only true if each number in the array is unique. Otherwise you override instead of append.
    $endgroup$
    – Graipher
    17 hours ago






  • 1




    $begingroup$
    @Graipher True, a defaultdict might be more appropriate there.
    $endgroup$
    – Ludisposed
    12 hours ago
















7












$begingroup$

First some stylistic points





  • nums_d.setdefault(nums[i], ).append(i)



    The setdefault is unnecessary here, you can assign a list normally



    nums_d[nums[i]] = [i]



  • When you need both the index and the element use enumerate see PEP279




    nums_d = {}
    for i in range(len(nums)):
    nums_d.setdefault(nums[i], ).append(i)



    nums_d = {}
    for i, e in enumerate(nums):
    nums_d[e] = [i]



  • Use comprehension when possible (They use the C style looping and is considered to be faster)



    nums_d = { e: [i] for i, e  in enumerate(nums) }



Hint



You loop over nums twice, but this can be done in one loop! To make it O(n)



Whenever you visit a new element in nums ->



Check if it's sum complement is in nums_d, else add the target - element to the dictionary with the index as value t - e : i





nums_d = {}
for i, e in enumerate(nums):
if e in nums_d:
return [nums_d[e], i]
nums_d[target - e] = i






share|improve this answer











$endgroup$













  • $begingroup$
    Your first bullet point is only true if each number in the array is unique. Otherwise you override instead of append.
    $endgroup$
    – Graipher
    17 hours ago






  • 1




    $begingroup$
    @Graipher True, a defaultdict might be more appropriate there.
    $endgroup$
    – Ludisposed
    12 hours ago














7












7








7





$begingroup$

First some stylistic points





  • nums_d.setdefault(nums[i], ).append(i)



    The setdefault is unnecessary here, you can assign a list normally



    nums_d[nums[i]] = [i]



  • When you need both the index and the element use enumerate see PEP279




    nums_d = {}
    for i in range(len(nums)):
    nums_d.setdefault(nums[i], ).append(i)



    nums_d = {}
    for i, e in enumerate(nums):
    nums_d[e] = [i]



  • Use comprehension when possible (They use the C style looping and is considered to be faster)



    nums_d = { e: [i] for i, e  in enumerate(nums) }



Hint



You loop over nums twice, but this can be done in one loop! To make it O(n)



Whenever you visit a new element in nums ->



Check if it's sum complement is in nums_d, else add the target - element to the dictionary with the index as value t - e : i





nums_d = {}
for i, e in enumerate(nums):
if e in nums_d:
return [nums_d[e], i]
nums_d[target - e] = i






share|improve this answer











$endgroup$



First some stylistic points





  • nums_d.setdefault(nums[i], ).append(i)



    The setdefault is unnecessary here, you can assign a list normally



    nums_d[nums[i]] = [i]



  • When you need both the index and the element use enumerate see PEP279




    nums_d = {}
    for i in range(len(nums)):
    nums_d.setdefault(nums[i], ).append(i)



    nums_d = {}
    for i, e in enumerate(nums):
    nums_d[e] = [i]



  • Use comprehension when possible (They use the C style looping and is considered to be faster)



    nums_d = { e: [i] for i, e  in enumerate(nums) }



Hint



You loop over nums twice, but this can be done in one loop! To make it O(n)



Whenever you visit a new element in nums ->



Check if it's sum complement is in nums_d, else add the target - element to the dictionary with the index as value t - e : i





nums_d = {}
for i, e in enumerate(nums):
if e in nums_d:
return [nums_d[e], i]
nums_d[target - e] = i







share|improve this answer














share|improve this answer



share|improve this answer








edited yesterday









ielyamani

355213




355213










answered yesterday









LudisposedLudisposed

8,95822267




8,95822267












  • $begingroup$
    Your first bullet point is only true if each number in the array is unique. Otherwise you override instead of append.
    $endgroup$
    – Graipher
    17 hours ago






  • 1




    $begingroup$
    @Graipher True, a defaultdict might be more appropriate there.
    $endgroup$
    – Ludisposed
    12 hours ago


















  • $begingroup$
    Your first bullet point is only true if each number in the array is unique. Otherwise you override instead of append.
    $endgroup$
    – Graipher
    17 hours ago






  • 1




    $begingroup$
    @Graipher True, a defaultdict might be more appropriate there.
    $endgroup$
    – Ludisposed
    12 hours ago
















$begingroup$
Your first bullet point is only true if each number in the array is unique. Otherwise you override instead of append.
$endgroup$
– Graipher
17 hours ago




$begingroup$
Your first bullet point is only true if each number in the array is unique. Otherwise you override instead of append.
$endgroup$
– Graipher
17 hours ago




1




1




$begingroup$
@Graipher True, a defaultdict might be more appropriate there.
$endgroup$
– Ludisposed
12 hours ago




$begingroup$
@Graipher True, a defaultdict might be more appropriate there.
$endgroup$
– Ludisposed
12 hours ago













0












$begingroup$


You may assume that each input would have exactly one solution.




So there's no need to iterate over num twice. In fact, you won't even iterate over it for the full range, because you can return when you found the solution.



With the input given, I'd try this:



nums = [2, 7, 11, 15]
target = 9

def twoSum(nums, target):
for i in nums:
for m in nums[nums.index(i)+1:]:
if i + m == target:
return [nums.index(i), nums.index(m)]

print(twoSum(nums, target))


Say i + m is your target twoSum, you iterate over nums for each i and then look in the rest of num if there's any m for which i + m = target, and return when found.



Edit: This fails if you have duplicate integers in nums that add up to target, and it'll be slower if the solution is two elements near the end of nums.



Also: thank you for mentioning Leetcode, it's new to me. Nice!






share|improve this answer











$endgroup$









  • 1




    $begingroup$
    Hey, long time no see! Unfortunately the code you've supplied is worse than the one in the question, as it takes $O(n^2)$ time and either $O(n)$ or $O(n^2)$ memory, depending on the GC. Where in the question it runs in $O(n)$ time and space. Yours is however easier to understand.
    $endgroup$
    – Peilonrayz
    yesterday












  • $begingroup$
    Hi, yes, I know, Ludisposed pointed that out as well, hence the edit. I came across the question in Triage, and thought I might as well try an answer. Hadn't thought beyond nums given, with which it yields the answer in 1+3+1=5 iterations. I'm not familiar with O(n^2), but I guess that'd be 16 here?
    $endgroup$
    – RolfBly
    10 hours ago










  • $begingroup$
    Ah, he must have deleted his comments. :( Yes it goes by the worst case, so if 11 and 15 were the targets. It's different from mathematics however, as your function runs in IIRC worst case $frac{n^2}{2}$ iterations. And so it's mostly just a vague guess at performance.
    $endgroup$
    – Peilonrayz
    6 hours ago
















0












$begingroup$


You may assume that each input would have exactly one solution.




So there's no need to iterate over num twice. In fact, you won't even iterate over it for the full range, because you can return when you found the solution.



With the input given, I'd try this:



nums = [2, 7, 11, 15]
target = 9

def twoSum(nums, target):
for i in nums:
for m in nums[nums.index(i)+1:]:
if i + m == target:
return [nums.index(i), nums.index(m)]

print(twoSum(nums, target))


Say i + m is your target twoSum, you iterate over nums for each i and then look in the rest of num if there's any m for which i + m = target, and return when found.



Edit: This fails if you have duplicate integers in nums that add up to target, and it'll be slower if the solution is two elements near the end of nums.



Also: thank you for mentioning Leetcode, it's new to me. Nice!






share|improve this answer











$endgroup$









  • 1




    $begingroup$
    Hey, long time no see! Unfortunately the code you've supplied is worse than the one in the question, as it takes $O(n^2)$ time and either $O(n)$ or $O(n^2)$ memory, depending on the GC. Where in the question it runs in $O(n)$ time and space. Yours is however easier to understand.
    $endgroup$
    – Peilonrayz
    yesterday












  • $begingroup$
    Hi, yes, I know, Ludisposed pointed that out as well, hence the edit. I came across the question in Triage, and thought I might as well try an answer. Hadn't thought beyond nums given, with which it yields the answer in 1+3+1=5 iterations. I'm not familiar with O(n^2), but I guess that'd be 16 here?
    $endgroup$
    – RolfBly
    10 hours ago










  • $begingroup$
    Ah, he must have deleted his comments. :( Yes it goes by the worst case, so if 11 and 15 were the targets. It's different from mathematics however, as your function runs in IIRC worst case $frac{n^2}{2}$ iterations. And so it's mostly just a vague guess at performance.
    $endgroup$
    – Peilonrayz
    6 hours ago














0












0








0





$begingroup$


You may assume that each input would have exactly one solution.




So there's no need to iterate over num twice. In fact, you won't even iterate over it for the full range, because you can return when you found the solution.



With the input given, I'd try this:



nums = [2, 7, 11, 15]
target = 9

def twoSum(nums, target):
for i in nums:
for m in nums[nums.index(i)+1:]:
if i + m == target:
return [nums.index(i), nums.index(m)]

print(twoSum(nums, target))


Say i + m is your target twoSum, you iterate over nums for each i and then look in the rest of num if there's any m for which i + m = target, and return when found.



Edit: This fails if you have duplicate integers in nums that add up to target, and it'll be slower if the solution is two elements near the end of nums.



Also: thank you for mentioning Leetcode, it's new to me. Nice!






share|improve this answer











$endgroup$




You may assume that each input would have exactly one solution.




So there's no need to iterate over num twice. In fact, you won't even iterate over it for the full range, because you can return when you found the solution.



With the input given, I'd try this:



nums = [2, 7, 11, 15]
target = 9

def twoSum(nums, target):
for i in nums:
for m in nums[nums.index(i)+1:]:
if i + m == target:
return [nums.index(i), nums.index(m)]

print(twoSum(nums, target))


Say i + m is your target twoSum, you iterate over nums for each i and then look in the rest of num if there's any m for which i + m = target, and return when found.



Edit: This fails if you have duplicate integers in nums that add up to target, and it'll be slower if the solution is two elements near the end of nums.



Also: thank you for mentioning Leetcode, it's new to me. Nice!







share|improve this answer














share|improve this answer



share|improve this answer








edited yesterday

























answered yesterday









RolfBlyRolfBly

592418




592418








  • 1




    $begingroup$
    Hey, long time no see! Unfortunately the code you've supplied is worse than the one in the question, as it takes $O(n^2)$ time and either $O(n)$ or $O(n^2)$ memory, depending on the GC. Where in the question it runs in $O(n)$ time and space. Yours is however easier to understand.
    $endgroup$
    – Peilonrayz
    yesterday












  • $begingroup$
    Hi, yes, I know, Ludisposed pointed that out as well, hence the edit. I came across the question in Triage, and thought I might as well try an answer. Hadn't thought beyond nums given, with which it yields the answer in 1+3+1=5 iterations. I'm not familiar with O(n^2), but I guess that'd be 16 here?
    $endgroup$
    – RolfBly
    10 hours ago










  • $begingroup$
    Ah, he must have deleted his comments. :( Yes it goes by the worst case, so if 11 and 15 were the targets. It's different from mathematics however, as your function runs in IIRC worst case $frac{n^2}{2}$ iterations. And so it's mostly just a vague guess at performance.
    $endgroup$
    – Peilonrayz
    6 hours ago














  • 1




    $begingroup$
    Hey, long time no see! Unfortunately the code you've supplied is worse than the one in the question, as it takes $O(n^2)$ time and either $O(n)$ or $O(n^2)$ memory, depending on the GC. Where in the question it runs in $O(n)$ time and space. Yours is however easier to understand.
    $endgroup$
    – Peilonrayz
    yesterday












  • $begingroup$
    Hi, yes, I know, Ludisposed pointed that out as well, hence the edit. I came across the question in Triage, and thought I might as well try an answer. Hadn't thought beyond nums given, with which it yields the answer in 1+3+1=5 iterations. I'm not familiar with O(n^2), but I guess that'd be 16 here?
    $endgroup$
    – RolfBly
    10 hours ago










  • $begingroup$
    Ah, he must have deleted his comments. :( Yes it goes by the worst case, so if 11 and 15 were the targets. It's different from mathematics however, as your function runs in IIRC worst case $frac{n^2}{2}$ iterations. And so it's mostly just a vague guess at performance.
    $endgroup$
    – Peilonrayz
    6 hours ago








1




1




$begingroup$
Hey, long time no see! Unfortunately the code you've supplied is worse than the one in the question, as it takes $O(n^2)$ time and either $O(n)$ or $O(n^2)$ memory, depending on the GC. Where in the question it runs in $O(n)$ time and space. Yours is however easier to understand.
$endgroup$
– Peilonrayz
yesterday






$begingroup$
Hey, long time no see! Unfortunately the code you've supplied is worse than the one in the question, as it takes $O(n^2)$ time and either $O(n)$ or $O(n^2)$ memory, depending on the GC. Where in the question it runs in $O(n)$ time and space. Yours is however easier to understand.
$endgroup$
– Peilonrayz
yesterday














$begingroup$
Hi, yes, I know, Ludisposed pointed that out as well, hence the edit. I came across the question in Triage, and thought I might as well try an answer. Hadn't thought beyond nums given, with which it yields the answer in 1+3+1=5 iterations. I'm not familiar with O(n^2), but I guess that'd be 16 here?
$endgroup$
– RolfBly
10 hours ago




$begingroup$
Hi, yes, I know, Ludisposed pointed that out as well, hence the edit. I came across the question in Triage, and thought I might as well try an answer. Hadn't thought beyond nums given, with which it yields the answer in 1+3+1=5 iterations. I'm not familiar with O(n^2), but I guess that'd be 16 here?
$endgroup$
– RolfBly
10 hours ago












$begingroup$
Ah, he must have deleted his comments. :( Yes it goes by the worst case, so if 11 and 15 were the targets. It's different from mathematics however, as your function runs in IIRC worst case $frac{n^2}{2}$ iterations. And so it's mostly just a vague guess at performance.
$endgroup$
– Peilonrayz
6 hours ago




$begingroup$
Ah, he must have deleted his comments. :( Yes it goes by the worst case, so if 11 and 15 were the targets. It's different from mathematics however, as your function runs in IIRC worst case $frac{n^2}{2}$ iterations. And so it's mostly just a vague guess at performance.
$endgroup$
– Peilonrayz
6 hours ago










Alice is a new contributor. Be nice, and check out our Code of Conduct.










draft saved

draft discarded


















Alice is a new contributor. Be nice, and check out our Code of Conduct.













Alice is a new contributor. Be nice, and check out our Code of Conduct.












Alice is a new contributor. Be nice, and check out our Code of Conduct.
















Thanks for contributing an answer to Code Review Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f215975%2fhash-table-solution-to-twosum%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

數位音樂下載

When can things happen in Etherscan, such as the picture below?

格利澤436b