Infinite sum of harmonic number












4












$begingroup$


I learned that I can find the value of some infinite sum.



Then what is the value of this sum?
$$frac12 + left(1+frac12right)frac1{2^2}+left(1+frac12 +frac13right)frac1{2^3}+left(1+frac12 +frac13 +frac14right)frac1{2^4} + cdots $$
And I want to know How to find the value of the infinite sum of this-like form.










share|cite|improve this question









$endgroup$

















    4












    $begingroup$


    I learned that I can find the value of some infinite sum.



    Then what is the value of this sum?
    $$frac12 + left(1+frac12right)frac1{2^2}+left(1+frac12 +frac13right)frac1{2^3}+left(1+frac12 +frac13 +frac14right)frac1{2^4} + cdots $$
    And I want to know How to find the value of the infinite sum of this-like form.










    share|cite|improve this question









    $endgroup$















      4












      4








      4


      3



      $begingroup$


      I learned that I can find the value of some infinite sum.



      Then what is the value of this sum?
      $$frac12 + left(1+frac12right)frac1{2^2}+left(1+frac12 +frac13right)frac1{2^3}+left(1+frac12 +frac13 +frac14right)frac1{2^4} + cdots $$
      And I want to know How to find the value of the infinite sum of this-like form.










      share|cite|improve this question









      $endgroup$




      I learned that I can find the value of some infinite sum.



      Then what is the value of this sum?
      $$frac12 + left(1+frac12right)frac1{2^2}+left(1+frac12 +frac13right)frac1{2^3}+left(1+frac12 +frac13 +frac14right)frac1{2^4} + cdots $$
      And I want to know How to find the value of the infinite sum of this-like form.







      sequences-and-series






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Apr 2 at 14:47









      S. YooS. Yoo

      424




      424






















          1 Answer
          1






          active

          oldest

          votes


















          8












          $begingroup$

          One can split this summation into
          $$left(frac12+frac1{2^2}+frac1{2^3}+cdotsright)+frac12left(frac1{2^2}+frac1{2^3}+cdotsright)+frac13left(frac1{2^3}+frac1{2^4}+cdotsright)+cdots$$
          $$begin{align}
          &=sum_{k=1}^infty frac1k sum_{j=k}^infty frac1{2^j}\
          &=sum_{k=1}^infty frac1k left(frac{2^{-k}}{1-2^{-1}}right)\
          &=sum_{k=1}^infty frac{2^{1-k}}k\
          &=2sum_{k=1}^infty frac{left(frac12right)^k}k\
          &=2left(-ln{left(1-frac12right)}right)\
          &boxed{=2ln{(2)}}
          end{align}$$

          By using the fact that
          $$ln{(1-x)}=-sum_{k=1}^infty frac{x^k}k$$
          for all $|x|lt 1$.



          In fact one can use a similar method to prove that
          $$sum_{k=1}^infty x^kH_k=frac1{1-x}ln{left(frac1{1-x}right)}$$
          for $|x|lt1$. Where $H_k$ is the $k$th harmonic number given by
          $$H_k=sum_{n=1}^kfrac1n$$






          share|cite|improve this answer











          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171942%2finfinite-sum-of-harmonic-number%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            8












            $begingroup$

            One can split this summation into
            $$left(frac12+frac1{2^2}+frac1{2^3}+cdotsright)+frac12left(frac1{2^2}+frac1{2^3}+cdotsright)+frac13left(frac1{2^3}+frac1{2^4}+cdotsright)+cdots$$
            $$begin{align}
            &=sum_{k=1}^infty frac1k sum_{j=k}^infty frac1{2^j}\
            &=sum_{k=1}^infty frac1k left(frac{2^{-k}}{1-2^{-1}}right)\
            &=sum_{k=1}^infty frac{2^{1-k}}k\
            &=2sum_{k=1}^infty frac{left(frac12right)^k}k\
            &=2left(-ln{left(1-frac12right)}right)\
            &boxed{=2ln{(2)}}
            end{align}$$

            By using the fact that
            $$ln{(1-x)}=-sum_{k=1}^infty frac{x^k}k$$
            for all $|x|lt 1$.



            In fact one can use a similar method to prove that
            $$sum_{k=1}^infty x^kH_k=frac1{1-x}ln{left(frac1{1-x}right)}$$
            for $|x|lt1$. Where $H_k$ is the $k$th harmonic number given by
            $$H_k=sum_{n=1}^kfrac1n$$






            share|cite|improve this answer











            $endgroup$


















              8












              $begingroup$

              One can split this summation into
              $$left(frac12+frac1{2^2}+frac1{2^3}+cdotsright)+frac12left(frac1{2^2}+frac1{2^3}+cdotsright)+frac13left(frac1{2^3}+frac1{2^4}+cdotsright)+cdots$$
              $$begin{align}
              &=sum_{k=1}^infty frac1k sum_{j=k}^infty frac1{2^j}\
              &=sum_{k=1}^infty frac1k left(frac{2^{-k}}{1-2^{-1}}right)\
              &=sum_{k=1}^infty frac{2^{1-k}}k\
              &=2sum_{k=1}^infty frac{left(frac12right)^k}k\
              &=2left(-ln{left(1-frac12right)}right)\
              &boxed{=2ln{(2)}}
              end{align}$$

              By using the fact that
              $$ln{(1-x)}=-sum_{k=1}^infty frac{x^k}k$$
              for all $|x|lt 1$.



              In fact one can use a similar method to prove that
              $$sum_{k=1}^infty x^kH_k=frac1{1-x}ln{left(frac1{1-x}right)}$$
              for $|x|lt1$. Where $H_k$ is the $k$th harmonic number given by
              $$H_k=sum_{n=1}^kfrac1n$$






              share|cite|improve this answer











              $endgroup$
















                8












                8








                8





                $begingroup$

                One can split this summation into
                $$left(frac12+frac1{2^2}+frac1{2^3}+cdotsright)+frac12left(frac1{2^2}+frac1{2^3}+cdotsright)+frac13left(frac1{2^3}+frac1{2^4}+cdotsright)+cdots$$
                $$begin{align}
                &=sum_{k=1}^infty frac1k sum_{j=k}^infty frac1{2^j}\
                &=sum_{k=1}^infty frac1k left(frac{2^{-k}}{1-2^{-1}}right)\
                &=sum_{k=1}^infty frac{2^{1-k}}k\
                &=2sum_{k=1}^infty frac{left(frac12right)^k}k\
                &=2left(-ln{left(1-frac12right)}right)\
                &boxed{=2ln{(2)}}
                end{align}$$

                By using the fact that
                $$ln{(1-x)}=-sum_{k=1}^infty frac{x^k}k$$
                for all $|x|lt 1$.



                In fact one can use a similar method to prove that
                $$sum_{k=1}^infty x^kH_k=frac1{1-x}ln{left(frac1{1-x}right)}$$
                for $|x|lt1$. Where $H_k$ is the $k$th harmonic number given by
                $$H_k=sum_{n=1}^kfrac1n$$






                share|cite|improve this answer











                $endgroup$



                One can split this summation into
                $$left(frac12+frac1{2^2}+frac1{2^3}+cdotsright)+frac12left(frac1{2^2}+frac1{2^3}+cdotsright)+frac13left(frac1{2^3}+frac1{2^4}+cdotsright)+cdots$$
                $$begin{align}
                &=sum_{k=1}^infty frac1k sum_{j=k}^infty frac1{2^j}\
                &=sum_{k=1}^infty frac1k left(frac{2^{-k}}{1-2^{-1}}right)\
                &=sum_{k=1}^infty frac{2^{1-k}}k\
                &=2sum_{k=1}^infty frac{left(frac12right)^k}k\
                &=2left(-ln{left(1-frac12right)}right)\
                &boxed{=2ln{(2)}}
                end{align}$$

                By using the fact that
                $$ln{(1-x)}=-sum_{k=1}^infty frac{x^k}k$$
                for all $|x|lt 1$.



                In fact one can use a similar method to prove that
                $$sum_{k=1}^infty x^kH_k=frac1{1-x}ln{left(frac1{1-x}right)}$$
                for $|x|lt1$. Where $H_k$ is the $k$th harmonic number given by
                $$H_k=sum_{n=1}^kfrac1n$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Apr 2 at 18:22









                Théophile

                20.4k13047




                20.4k13047










                answered Apr 2 at 15:08









                Peter ForemanPeter Foreman

                5,8141317




                5,8141317






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171942%2finfinite-sum-of-harmonic-number%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    數位音樂下載

                    格利澤436b

                    When can things happen in Etherscan, such as the picture below?