Infinite sum of harmonic number
$begingroup$
I learned that I can find the value of some infinite sum.
Then what is the value of this sum?
$$frac12 + left(1+frac12right)frac1{2^2}+left(1+frac12 +frac13right)frac1{2^3}+left(1+frac12 +frac13 +frac14right)frac1{2^4} + cdots $$
And I want to know How to find the value of the infinite sum of this-like form.
sequences-and-series
$endgroup$
add a comment |
$begingroup$
I learned that I can find the value of some infinite sum.
Then what is the value of this sum?
$$frac12 + left(1+frac12right)frac1{2^2}+left(1+frac12 +frac13right)frac1{2^3}+left(1+frac12 +frac13 +frac14right)frac1{2^4} + cdots $$
And I want to know How to find the value of the infinite sum of this-like form.
sequences-and-series
$endgroup$
add a comment |
$begingroup$
I learned that I can find the value of some infinite sum.
Then what is the value of this sum?
$$frac12 + left(1+frac12right)frac1{2^2}+left(1+frac12 +frac13right)frac1{2^3}+left(1+frac12 +frac13 +frac14right)frac1{2^4} + cdots $$
And I want to know How to find the value of the infinite sum of this-like form.
sequences-and-series
$endgroup$
I learned that I can find the value of some infinite sum.
Then what is the value of this sum?
$$frac12 + left(1+frac12right)frac1{2^2}+left(1+frac12 +frac13right)frac1{2^3}+left(1+frac12 +frac13 +frac14right)frac1{2^4} + cdots $$
And I want to know How to find the value of the infinite sum of this-like form.
sequences-and-series
sequences-and-series
asked Apr 2 at 14:47
S. YooS. Yoo
424
424
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
One can split this summation into
$$left(frac12+frac1{2^2}+frac1{2^3}+cdotsright)+frac12left(frac1{2^2}+frac1{2^3}+cdotsright)+frac13left(frac1{2^3}+frac1{2^4}+cdotsright)+cdots$$
$$begin{align}
&=sum_{k=1}^infty frac1k sum_{j=k}^infty frac1{2^j}\
&=sum_{k=1}^infty frac1k left(frac{2^{-k}}{1-2^{-1}}right)\
&=sum_{k=1}^infty frac{2^{1-k}}k\
&=2sum_{k=1}^infty frac{left(frac12right)^k}k\
&=2left(-ln{left(1-frac12right)}right)\
&boxed{=2ln{(2)}}
end{align}$$
By using the fact that
$$ln{(1-x)}=-sum_{k=1}^infty frac{x^k}k$$
for all $|x|lt 1$.
In fact one can use a similar method to prove that
$$sum_{k=1}^infty x^kH_k=frac1{1-x}ln{left(frac1{1-x}right)}$$
for $|x|lt1$. Where $H_k$ is the $k$th harmonic number given by
$$H_k=sum_{n=1}^kfrac1n$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171942%2finfinite-sum-of-harmonic-number%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
One can split this summation into
$$left(frac12+frac1{2^2}+frac1{2^3}+cdotsright)+frac12left(frac1{2^2}+frac1{2^3}+cdotsright)+frac13left(frac1{2^3}+frac1{2^4}+cdotsright)+cdots$$
$$begin{align}
&=sum_{k=1}^infty frac1k sum_{j=k}^infty frac1{2^j}\
&=sum_{k=1}^infty frac1k left(frac{2^{-k}}{1-2^{-1}}right)\
&=sum_{k=1}^infty frac{2^{1-k}}k\
&=2sum_{k=1}^infty frac{left(frac12right)^k}k\
&=2left(-ln{left(1-frac12right)}right)\
&boxed{=2ln{(2)}}
end{align}$$
By using the fact that
$$ln{(1-x)}=-sum_{k=1}^infty frac{x^k}k$$
for all $|x|lt 1$.
In fact one can use a similar method to prove that
$$sum_{k=1}^infty x^kH_k=frac1{1-x}ln{left(frac1{1-x}right)}$$
for $|x|lt1$. Where $H_k$ is the $k$th harmonic number given by
$$H_k=sum_{n=1}^kfrac1n$$
$endgroup$
add a comment |
$begingroup$
One can split this summation into
$$left(frac12+frac1{2^2}+frac1{2^3}+cdotsright)+frac12left(frac1{2^2}+frac1{2^3}+cdotsright)+frac13left(frac1{2^3}+frac1{2^4}+cdotsright)+cdots$$
$$begin{align}
&=sum_{k=1}^infty frac1k sum_{j=k}^infty frac1{2^j}\
&=sum_{k=1}^infty frac1k left(frac{2^{-k}}{1-2^{-1}}right)\
&=sum_{k=1}^infty frac{2^{1-k}}k\
&=2sum_{k=1}^infty frac{left(frac12right)^k}k\
&=2left(-ln{left(1-frac12right)}right)\
&boxed{=2ln{(2)}}
end{align}$$
By using the fact that
$$ln{(1-x)}=-sum_{k=1}^infty frac{x^k}k$$
for all $|x|lt 1$.
In fact one can use a similar method to prove that
$$sum_{k=1}^infty x^kH_k=frac1{1-x}ln{left(frac1{1-x}right)}$$
for $|x|lt1$. Where $H_k$ is the $k$th harmonic number given by
$$H_k=sum_{n=1}^kfrac1n$$
$endgroup$
add a comment |
$begingroup$
One can split this summation into
$$left(frac12+frac1{2^2}+frac1{2^3}+cdotsright)+frac12left(frac1{2^2}+frac1{2^3}+cdotsright)+frac13left(frac1{2^3}+frac1{2^4}+cdotsright)+cdots$$
$$begin{align}
&=sum_{k=1}^infty frac1k sum_{j=k}^infty frac1{2^j}\
&=sum_{k=1}^infty frac1k left(frac{2^{-k}}{1-2^{-1}}right)\
&=sum_{k=1}^infty frac{2^{1-k}}k\
&=2sum_{k=1}^infty frac{left(frac12right)^k}k\
&=2left(-ln{left(1-frac12right)}right)\
&boxed{=2ln{(2)}}
end{align}$$
By using the fact that
$$ln{(1-x)}=-sum_{k=1}^infty frac{x^k}k$$
for all $|x|lt 1$.
In fact one can use a similar method to prove that
$$sum_{k=1}^infty x^kH_k=frac1{1-x}ln{left(frac1{1-x}right)}$$
for $|x|lt1$. Where $H_k$ is the $k$th harmonic number given by
$$H_k=sum_{n=1}^kfrac1n$$
$endgroup$
One can split this summation into
$$left(frac12+frac1{2^2}+frac1{2^3}+cdotsright)+frac12left(frac1{2^2}+frac1{2^3}+cdotsright)+frac13left(frac1{2^3}+frac1{2^4}+cdotsright)+cdots$$
$$begin{align}
&=sum_{k=1}^infty frac1k sum_{j=k}^infty frac1{2^j}\
&=sum_{k=1}^infty frac1k left(frac{2^{-k}}{1-2^{-1}}right)\
&=sum_{k=1}^infty frac{2^{1-k}}k\
&=2sum_{k=1}^infty frac{left(frac12right)^k}k\
&=2left(-ln{left(1-frac12right)}right)\
&boxed{=2ln{(2)}}
end{align}$$
By using the fact that
$$ln{(1-x)}=-sum_{k=1}^infty frac{x^k}k$$
for all $|x|lt 1$.
In fact one can use a similar method to prove that
$$sum_{k=1}^infty x^kH_k=frac1{1-x}ln{left(frac1{1-x}right)}$$
for $|x|lt1$. Where $H_k$ is the $k$th harmonic number given by
$$H_k=sum_{n=1}^kfrac1n$$
edited Apr 2 at 18:22
Théophile
20.4k13047
20.4k13047
answered Apr 2 at 15:08
Peter ForemanPeter Foreman
5,8141317
5,8141317
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171942%2finfinite-sum-of-harmonic-number%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown