minimum of $a^2+4b^2+c^2$ given $2a+b+3c=20$
$begingroup$
If $a,b,cinmathbb{R}$ and $2a+b+3c=20.$ Then minimum value of $a^2+4b^2+c^2$ is
what i try
Cauchy schwarz inequality
$$(a^2+(2b)^2+c^2)(2^2+frac{1}{2^2}+3^2)geq (2a+b+3c)^2$$
How do i solve it without Cauchy schwarz inequality Help me please
inequality optimization quadratics maxima-minima
$endgroup$
add a comment |
$begingroup$
If $a,b,cinmathbb{R}$ and $2a+b+3c=20.$ Then minimum value of $a^2+4b^2+c^2$ is
what i try
Cauchy schwarz inequality
$$(a^2+(2b)^2+c^2)(2^2+frac{1}{2^2}+3^2)geq (2a+b+3c)^2$$
How do i solve it without Cauchy schwarz inequality Help me please
inequality optimization quadratics maxima-minima
$endgroup$
add a comment |
$begingroup$
If $a,b,cinmathbb{R}$ and $2a+b+3c=20.$ Then minimum value of $a^2+4b^2+c^2$ is
what i try
Cauchy schwarz inequality
$$(a^2+(2b)^2+c^2)(2^2+frac{1}{2^2}+3^2)geq (2a+b+3c)^2$$
How do i solve it without Cauchy schwarz inequality Help me please
inequality optimization quadratics maxima-minima
$endgroup$
If $a,b,cinmathbb{R}$ and $2a+b+3c=20.$ Then minimum value of $a^2+4b^2+c^2$ is
what i try
Cauchy schwarz inequality
$$(a^2+(2b)^2+c^2)(2^2+frac{1}{2^2}+3^2)geq (2a+b+3c)^2$$
How do i solve it without Cauchy schwarz inequality Help me please
inequality optimization quadratics maxima-minima
inequality optimization quadratics maxima-minima
edited 2 days ago
user21820
39.8k544158
39.8k544158
asked 2 days ago
jackyjacky
1,341816
1,341816
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Put $b'=2b$ so that we minimize $a^2+(b')^2+c^2$ subject to $4a+b'+6c=40$. Now, since the point $x=(a,b',c)$ is on the plane $P: 4x+y+6z=40$, its distance from the origin is minimized when it is parallel to the normal vector $n=(4,1,6)$ to the plane $P$. If we solve $x=tn=(4t,t,6t)in P$ for $tinBbb R$, then we get $53t=40$ and $x=frac{40}{53}(4,1,6)$ follows. Hence we obtain
$$
a^2+(b')^2+c^2 ge |x|^2=frac{1600}{53}
$$ is the minimum.
$endgroup$
add a comment |
$begingroup$
An alternative way of solving the problem is using Lagrange multipliers, other than that (i.e. without using the CS inequality), I don't see a simple solution, and neither do I see a reason to look for such a solution.
$endgroup$
add a comment |
$begingroup$
I think this solution is more simple.
From $$2a+b+3c=20Leftrightarrow b=20-2a-3c$$
Then $$A=a^2+4left(20-2a-3cright)^2+c^2$$
$$=17a^2+48ac-320a+37c^2-480c+1600$$
$$=frac{1}{17}(17a+24c-160)^2+frac{1}{17}left(53left(c-frac{240}{53}right)^2+frac{27200}{53}right )$$
$$ge frac{1}{17}cdot frac{27200}{53}=frac{1600}{53}$$
The equality occurs when $(a;b;c)=left(frac{160}{53};frac{20}{53};frac{240}{53}right)$
$endgroup$
add a comment |
$begingroup$
Let $(a,b,c)=left(frac{160}{53},frac{20}{53},frac{240}{53}right).$
Thus, we get a value $frac{1600}{53}.$
We'll prove that it's a minimal value.
Indeed, we need to prove that
$$a^2+4b^2+c^2geqfrac{1600}{53}cdotleft(frac{2a+b+3c}{20}right)^2$$ or
$$37a^2-16(b+3c)a+208b^2-24bc+17c^2geq0,$$ for which it's enough to prove that
$$64(b+3c)^2-37(208b^2-24bc+17c^2)leq0,$$ which is
$$(12b-c)^2geq0.$$
Done!
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163005%2fminimum-of-a24b2c2-given-2ab3c-20%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Put $b'=2b$ so that we minimize $a^2+(b')^2+c^2$ subject to $4a+b'+6c=40$. Now, since the point $x=(a,b',c)$ is on the plane $P: 4x+y+6z=40$, its distance from the origin is minimized when it is parallel to the normal vector $n=(4,1,6)$ to the plane $P$. If we solve $x=tn=(4t,t,6t)in P$ for $tinBbb R$, then we get $53t=40$ and $x=frac{40}{53}(4,1,6)$ follows. Hence we obtain
$$
a^2+(b')^2+c^2 ge |x|^2=frac{1600}{53}
$$ is the minimum.
$endgroup$
add a comment |
$begingroup$
Put $b'=2b$ so that we minimize $a^2+(b')^2+c^2$ subject to $4a+b'+6c=40$. Now, since the point $x=(a,b',c)$ is on the plane $P: 4x+y+6z=40$, its distance from the origin is minimized when it is parallel to the normal vector $n=(4,1,6)$ to the plane $P$. If we solve $x=tn=(4t,t,6t)in P$ for $tinBbb R$, then we get $53t=40$ and $x=frac{40}{53}(4,1,6)$ follows. Hence we obtain
$$
a^2+(b')^2+c^2 ge |x|^2=frac{1600}{53}
$$ is the minimum.
$endgroup$
add a comment |
$begingroup$
Put $b'=2b$ so that we minimize $a^2+(b')^2+c^2$ subject to $4a+b'+6c=40$. Now, since the point $x=(a,b',c)$ is on the plane $P: 4x+y+6z=40$, its distance from the origin is minimized when it is parallel to the normal vector $n=(4,1,6)$ to the plane $P$. If we solve $x=tn=(4t,t,6t)in P$ for $tinBbb R$, then we get $53t=40$ and $x=frac{40}{53}(4,1,6)$ follows. Hence we obtain
$$
a^2+(b')^2+c^2 ge |x|^2=frac{1600}{53}
$$ is the minimum.
$endgroup$
Put $b'=2b$ so that we minimize $a^2+(b')^2+c^2$ subject to $4a+b'+6c=40$. Now, since the point $x=(a,b',c)$ is on the plane $P: 4x+y+6z=40$, its distance from the origin is minimized when it is parallel to the normal vector $n=(4,1,6)$ to the plane $P$. If we solve $x=tn=(4t,t,6t)in P$ for $tinBbb R$, then we get $53t=40$ and $x=frac{40}{53}(4,1,6)$ follows. Hence we obtain
$$
a^2+(b')^2+c^2 ge |x|^2=frac{1600}{53}
$$ is the minimum.
answered 2 days ago
SongSong
18.5k21651
18.5k21651
add a comment |
add a comment |
$begingroup$
An alternative way of solving the problem is using Lagrange multipliers, other than that (i.e. without using the CS inequality), I don't see a simple solution, and neither do I see a reason to look for such a solution.
$endgroup$
add a comment |
$begingroup$
An alternative way of solving the problem is using Lagrange multipliers, other than that (i.e. without using the CS inequality), I don't see a simple solution, and neither do I see a reason to look for such a solution.
$endgroup$
add a comment |
$begingroup$
An alternative way of solving the problem is using Lagrange multipliers, other than that (i.e. without using the CS inequality), I don't see a simple solution, and neither do I see a reason to look for such a solution.
$endgroup$
An alternative way of solving the problem is using Lagrange multipliers, other than that (i.e. without using the CS inequality), I don't see a simple solution, and neither do I see a reason to look for such a solution.
answered 2 days ago
5xum5xum
91.8k394161
91.8k394161
add a comment |
add a comment |
$begingroup$
I think this solution is more simple.
From $$2a+b+3c=20Leftrightarrow b=20-2a-3c$$
Then $$A=a^2+4left(20-2a-3cright)^2+c^2$$
$$=17a^2+48ac-320a+37c^2-480c+1600$$
$$=frac{1}{17}(17a+24c-160)^2+frac{1}{17}left(53left(c-frac{240}{53}right)^2+frac{27200}{53}right )$$
$$ge frac{1}{17}cdot frac{27200}{53}=frac{1600}{53}$$
The equality occurs when $(a;b;c)=left(frac{160}{53};frac{20}{53};frac{240}{53}right)$
$endgroup$
add a comment |
$begingroup$
I think this solution is more simple.
From $$2a+b+3c=20Leftrightarrow b=20-2a-3c$$
Then $$A=a^2+4left(20-2a-3cright)^2+c^2$$
$$=17a^2+48ac-320a+37c^2-480c+1600$$
$$=frac{1}{17}(17a+24c-160)^2+frac{1}{17}left(53left(c-frac{240}{53}right)^2+frac{27200}{53}right )$$
$$ge frac{1}{17}cdot frac{27200}{53}=frac{1600}{53}$$
The equality occurs when $(a;b;c)=left(frac{160}{53};frac{20}{53};frac{240}{53}right)$
$endgroup$
add a comment |
$begingroup$
I think this solution is more simple.
From $$2a+b+3c=20Leftrightarrow b=20-2a-3c$$
Then $$A=a^2+4left(20-2a-3cright)^2+c^2$$
$$=17a^2+48ac-320a+37c^2-480c+1600$$
$$=frac{1}{17}(17a+24c-160)^2+frac{1}{17}left(53left(c-frac{240}{53}right)^2+frac{27200}{53}right )$$
$$ge frac{1}{17}cdot frac{27200}{53}=frac{1600}{53}$$
The equality occurs when $(a;b;c)=left(frac{160}{53};frac{20}{53};frac{240}{53}right)$
$endgroup$
I think this solution is more simple.
From $$2a+b+3c=20Leftrightarrow b=20-2a-3c$$
Then $$A=a^2+4left(20-2a-3cright)^2+c^2$$
$$=17a^2+48ac-320a+37c^2-480c+1600$$
$$=frac{1}{17}(17a+24c-160)^2+frac{1}{17}left(53left(c-frac{240}{53}right)^2+frac{27200}{53}right )$$
$$ge frac{1}{17}cdot frac{27200}{53}=frac{1600}{53}$$
The equality occurs when $(a;b;c)=left(frac{160}{53};frac{20}{53};frac{240}{53}right)$
answered 2 days ago
Word ShallowWord Shallow
1,1182621
1,1182621
add a comment |
add a comment |
$begingroup$
Let $(a,b,c)=left(frac{160}{53},frac{20}{53},frac{240}{53}right).$
Thus, we get a value $frac{1600}{53}.$
We'll prove that it's a minimal value.
Indeed, we need to prove that
$$a^2+4b^2+c^2geqfrac{1600}{53}cdotleft(frac{2a+b+3c}{20}right)^2$$ or
$$37a^2-16(b+3c)a+208b^2-24bc+17c^2geq0,$$ for which it's enough to prove that
$$64(b+3c)^2-37(208b^2-24bc+17c^2)leq0,$$ which is
$$(12b-c)^2geq0.$$
Done!
$endgroup$
add a comment |
$begingroup$
Let $(a,b,c)=left(frac{160}{53},frac{20}{53},frac{240}{53}right).$
Thus, we get a value $frac{1600}{53}.$
We'll prove that it's a minimal value.
Indeed, we need to prove that
$$a^2+4b^2+c^2geqfrac{1600}{53}cdotleft(frac{2a+b+3c}{20}right)^2$$ or
$$37a^2-16(b+3c)a+208b^2-24bc+17c^2geq0,$$ for which it's enough to prove that
$$64(b+3c)^2-37(208b^2-24bc+17c^2)leq0,$$ which is
$$(12b-c)^2geq0.$$
Done!
$endgroup$
add a comment |
$begingroup$
Let $(a,b,c)=left(frac{160}{53},frac{20}{53},frac{240}{53}right).$
Thus, we get a value $frac{1600}{53}.$
We'll prove that it's a minimal value.
Indeed, we need to prove that
$$a^2+4b^2+c^2geqfrac{1600}{53}cdotleft(frac{2a+b+3c}{20}right)^2$$ or
$$37a^2-16(b+3c)a+208b^2-24bc+17c^2geq0,$$ for which it's enough to prove that
$$64(b+3c)^2-37(208b^2-24bc+17c^2)leq0,$$ which is
$$(12b-c)^2geq0.$$
Done!
$endgroup$
Let $(a,b,c)=left(frac{160}{53},frac{20}{53},frac{240}{53}right).$
Thus, we get a value $frac{1600}{53}.$
We'll prove that it's a minimal value.
Indeed, we need to prove that
$$a^2+4b^2+c^2geqfrac{1600}{53}cdotleft(frac{2a+b+3c}{20}right)^2$$ or
$$37a^2-16(b+3c)a+208b^2-24bc+17c^2geq0,$$ for which it's enough to prove that
$$64(b+3c)^2-37(208b^2-24bc+17c^2)leq0,$$ which is
$$(12b-c)^2geq0.$$
Done!
answered 2 days ago
Michael RozenbergMichael Rozenberg
109k1896201
109k1896201
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163005%2fminimum-of-a24b2c2-given-2ab3c-20%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown